10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

Preprint

Semantic Classification and Hash CodAcceleratedDetection
of Design Changes in BIM Models

Jia-Rui Lin ", Yu-Cheng Zhoui*?
aDepartment of Civil Engineering, Tsinghua UniversBgijing, China 100084

bTsinghua UniversityGlodon Joint Research Centre for Building Information Model (RCBIM), Tsinghua University,
Beijing, China 100084

Abstract

As the design process of a building or infrastructure is complex with iterative stepsibiiaiisciplinary collaboration,
design changes are inevitable and efficient change detection baBedlding InformationModeling (BIM) is essential
for design collaboration and quality control. Although sataextion methodshave been proposed to tackle the problem,
majority of themregard syntactic data changes as design chandpsh alwaysyield incorrectand meaningless results
For instanceexchangng the locations of two identical columris meaningless from tha@ewpoint of a designer, which
the current methods take it aglesign chang®therwise additional time is needed to avoid these issues, thus leading to
high time consumptianTo addresshis problem we first propose a semantic classification of design changgh three
categories of data changes and three levels of designh changesaéfficjentdetectionmethodconsidering the proposed
semantic classification of design changes is proposed withduagbased acceleratioAfter implementing the propode
and existingmethod, the detection performance of our methisdompared withithe performanceof existing methods
andinvited designers based @hgroups ofBIM models Resultsshow that our method could) detect semantichanges
with 100% correctnesshile reducingup to 98.1%of the detectiontime of existing method and 2) improve thaverage
detectionrateof designersrom 81.3% to 100%while saving99.88% of the design reviewing tim@letecting7 changes
from 5800 instancs). This research contributés the body of knowledga new definitionof design changeand an
approach teefficient design changdetectionwith hashcodebased acceleratioMeanwhile, the proposed classification
of design changes and develofd¥ models in this researdanalsobetakenasabaselindor developing andalidating

newdetection methods.

Keywords: building information modeling (BIM); change detectisemanticclassification; hash codacceleration

design automation; collabation; smart design

1 Introduction

The Architecture, Engineering, and Construction (AEC) design process is complewalndsmany iterative steps

* Corresponding author, emalin611@tsinghua.edu.¢parui_lin@foxmail.com

mailto:lin611@tsinghua.edu.cn
mailto:jiarui_lin@foxmail.com

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

and multidisciplinarydesignwork that can b@erformedsequentially, concurrently or in paralldl]. Changesn design
are inevitableand comdrom multiple sourcest any time which lead tocextensive impast[2,3]. Overthe past decade,
Building InformationModeling (BIM) has increasimg been adopteds a digital representatioas aknowledge resource
andas anintegratedmethodfor building lifecycle managemeft-7]. Howevert is challenging to detectesign changes
as the are often documented in meeting memos, mail correspondences, oniatposon t he pr oj ect
solely in the memory of the project participaf8sl0]. Furthemore substantial information losses ocamneneveran
employee leaves the projgifl]. Consequentlythe effects of design charsgre so opaque that the consequences are hard
to judge, soratimes resulting in critical afteaffectsevenin current BIMbased workflowg12]. On the other handhis
situation means thatesign change detection plays an important role in design collaboration. For instance, desighers
share and exchange dat®ong diverse software todls3,14} the ability to detealesign changes can reduce the amount
of transferred informatioandimprove the efficiency of partial model excharigig]. Changeletection alsdelpsdesigners,
engineers, and managers focus barmgegiuringthedesign process. However, manually detecting or checking for design
changes is time consuming and error prone. Therefore, automated design change detegtilgringportant

Design change detectidiegarnwhen 2Dbased drawingaereused to represeatfacility. Inthe CAD environment, a
common way to detect changesu@ngthree primitive operatorthat capture the essence of available CAD drawing and
editing operators: insert, delete and replgdd. In 3D objectbased BIM modelsadditionalinformation such as 3D
shapes and propertigan be expressed in a model, and design change detection hastbasivelystudied by researchers.

However,semantic design change, whigpresentsneaningful design change froad e s i gpoire of &iew in this

researchis not widely considered in many studies, thus leading to meaningless detection results and wasting a lot of time.

Currently, many detection methodsually matclinstance®sf two design versionsy theirIDs(e.g, GUID) and comparing

all properties of eacmatched paiin BIM models[17,18] These methodfailed toconsider the semantics of instances in
BIM models andthey may detect meaningless change reshétsausehey regard data changes as design changes. Fo
example, exchanging the locations of tidenticalcolumns will be detected as a changesbghmethod, whichactually
should notbe consideredsa changd r om a de s i g n.eSimiasy, deletingnahd recreating)é same beam
should not be ansidered a changln addition these methods asensitiveto the IDs ofinstance. Whenthe IDs change
unexpectedly, the detection result willibeorrect. Many studies have notibgse issues and proposed improved detection
methods, such athe geometrybased[19] and contentbased[20] automatic comparison appro&sh However,these
methods are still not perfebiecausdhe detection results also contain meaningless chaagdsthey are usually time
consuming.

Obviously,the definition of semdit design changes is nolear, and is always mixed with data chandesaddress

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

these issueghis researcHocuses on two aspects of design charieclassification, whichprovides adefinition of
semantic design changes ana isriterionfor design change detecticend?2) detection, which is a methas$ well as an
algorithmto identify semanticdesignchanges according to the classification. First, we propose a semantic classification
of design changethat divides data changes into tereategories and classifies design changes into three levelafrom
d e s i gievgpoint Next, weimprovethe detection methduoly consideringhe proposed classification criteritmenabé
the detection ofsemanticdesignchanges Finally, the hashcodebasedencoding ofinstanceproperties is utilizedo
accelerate the comparison procebdesign changdetection

The remainder of thipaper is structured as follows. Section 2 reviews the related works, including those on the
classification and detection of design changes, and highligitesitial research gapSection 3 describes the methodology
of this researchSection 4 proposes amsantic classification of design changes. Section 5 propdseshaodeaccelerated
methodthat can detect semantic changes with high efficiency. Section 6 impleretitshe proposed and existing
methods, establishes BIM models, and testslttectionperformance of boththese methods araf designersSection 7
discusses the applicability and novelty of thantribution and point out some complicated work that can expand the

application of the proposed method. Finally, Secti@moBcludeghis researh and discusses future work.

2 Related Works
In the AEC design processesign changes occur rapidlyringthe design, engineering and construction phfists

the changesannot always be avoided or fully anticipatadd arealsb d e nt i y e d majer caoseseof corfstruttibne
project failure and a key source of project de[@ls22]. To respond tdhe market demandgrojectowners may request
a series of design changes to project desigreny phase of the projel@&3]. Currently, in the BiIMbasd workflows,
extensive studies of automatic design change detection have been done by many researchers.

In theBIM model data representation standbrdlustry Foundation Classes (IF&)d mostly used BIM platfornig.g.,
Autodesk Revit, each instance has identifier that can be used to traitkinformation changesuch as GUID in IFC or
Elementld in Revit; this research calls sh@entifiers as ID. IFQlefines arEXPRESSbased entityelationship model
thatconsiss of several hundred entities orgaad into an objedbased inheritance hierarcf84]. In Revit, the data in a
document consistprimarily of a collection oklementg25] in which eachelementhas many propertie§enerally the
BIM model structurecan be described by instances (objetiia} possesmany propertiesThe mostly used method of
design change detectionngatching instances of two design versiohg their IDs and comparing all properties of each
matched paiin BIM models This method has been adopted by matydies[17,18] and by most commercial BIM
platforms, such as Autodesk Revit, Navisworks, and Graphisoft Archi(28D However, as mentioned above, this

methodmay detect meaningless change reauitdis sensitive to the ID. To address the issue of this method, mdigsst

90

91

92

93

94

95

96

97

98

99

100
101

102

103

104

105

106

107
108

109

110

111

112

113

114

115

116

117

have proposed improved detection methag®, G. et al[26] proposed a flatteningased methothatutilizes a recursive

strategy t o paadtherstoompareg hienptaamneeaed i nst ancle fl9]prapasedan S.

approach for detecting equivalences in IFC datasets based on a geometrical comparisoa fiesti@are mparison second.

Shi, X. et al.[20] proposed aconteflta s ed aut omati ¢ ¢ o mp a rthatsoostructa @ lgeracckioalh

structure for both files and then uses an iterative bottipnprocedure to compare them. Shafiga,TMand Lockleyb, S

R. [27] proposed a signatufzased model comparison approach for IFC models thaingtance characteristics to define

the correspondiy signatureswhich can be used to establish candidates for comparidowever,these methods are

suffering from the fact thaher detection results also contain meaningless chaagesthey are usually time consuming.

Next, this section will first dscribe the current classification of design changes, and then discuss two typsigof

changedetection methods, and finally summary tlegects of current detection methods.

2.1 Classification of Design Changes

Design changeusually involve two files (documentghis researclalls them File A (the old file) and File B (the new

file). Currently, design changes are classified into three types bystooses added (newly created), modified (revised),

anddeleted (removed)hangeq1,19,23,26,28,29]This researcsummarizes their definitions as follows.

f
f
f

Added. An instance existnly in File B.
Deleted. An instance existgly in File A.

Modified. An instance exists in Files A and it they are not equal (some propertieanded).

2.2 Detection of Design Changes

According to the current classification of design changs,researciygroupsdetection methods into two categories

based orthe orderin which theyexecue the following twoprocesses

il

Matching. Determine whether an instamté-ile A alsoexists inFile B or vice versaThis processisuallyuses

thelIDof aninstancetb i nd i ts fAi dent i c dhabdis, rawred iastances exishin bath Bilesihend Bf i

while unmatchedhstancexist in only one file.

|l

Comparison. Determine whethevo instances are equal or whetlieere argwo equal instancesxistin both

Files A and B. This process usuatigmparesll the properties of instances (except ID).

Therefore, the two cageries of detection methods arefalbows:

1
f

Matchingfirst method.The matching procesis executedirst and thercomparson is performed

Comparisorfirst method.Thecomparison process executedirst and then matching (optiona$) performed

f

(O

e

118

119

120

121

122

123

124

125

126
127

128

129

130

131

132

133

134

Most ofthe time ID (e.g, GUID in IFC or Elementld in Revit) is the only propertged formatching, save define

matchingasmatchingtwo instancesy ID in this researcisomestudiesnay call the comparison bfo instanceroperties

other tharlD fimatching butthatprocess is called comparisonthis research

221

Matching-first Method

Figurel showstheflowchart ofthe matchingfirst methodfor designchangedetection|n this figure, files hat fii nst

and

fiinst2d are from can becabwi tchhad eddhdtishfdiltthdtiled (Bp ut p ut

are changed to File B (Ah the flowchart t he out put MRAdlddasrdealse dpaiestodlowichart

below.

(An instancanstlin File A)

An newinstancenst2
in FileB

Yes

Yes

Comparison

All properties ofins
andinst2are equal?

Yes | No

Unchanged Modified

Figurel. Flowchart ofthe matchingfirst methodfor designchangedetection

The matchingfirst method is the mostommonlyused methodbr detecting design changes between two BIM models;

its comparison process usuatiympars all the properties (except ID)f each instancé-or convenience the subsequent

analysisthis researcllefines two types of detection errors as follows.

il

Major erior. A changed (added/deleted/modified) instance is detected as unchanged, or an unchanged instance is

detected as changed.

1
added).

Minor error. A changed instance is detectedhdéfferent change type (e,ca modified instance is detected as

135

136

137

138

139

140

141

142

143

144

145
146

147
148

149

150

151

152

The advantags ofthe matchingfirst method are simple and fast, but it is sensitive to ID and may yield meaningless
results.Regardinghe sensitivity to ID, an unexpected change of ID (which is called unreliableccanwhen copying
models, saving as, work shagimand syncing in Revii30]; once this happenthe matchingfirst method willno longer
match any instaneen Files A and B Thus,even two instanceshoseproperties (except IDgreall equal will be detected
as deleted and adddgdonsequentlywhen thdD is unreliablethe matchingfirst method will result irmanymajor errors.

Meaningless resultmay result fromthe matchingfirst methodregardless of whether thB is reliable.Consider an
exchangef locations for twadenticalcolumns asnexample. If all properties (except ID) of these two columns are equal,
then this exchange should not é@nsiderech change because it is meaningless from a desigvpoint However, the
matchingfirst method will detect it as a changkthelocations @ the two columns. Thus, theatchingfirst method may
result in major errorsegardless of whethéhe ID is reliable.

2.2.2 Comparisonfirst Method

Figure2 showsthe flowchart ofthe comparisotfirst methodfor designchangedetection

(An instancanstlin File A)

Comparison process An newinstancanst2

in File B

| properties ofins
ndinst2are equ

Yes No

Figure2. Flowchart ofthe comparisoiiirst methodfor designchangedetection

To improve the detection correctnesdiod matchingfirst method, mangtudies hav@roposed new methods, most of
whichare comparisoffirst methodsIn fact, theflatteningbased methoff6], geometrybased methofl 9], contentbased
method [20], and signaturdased method27] mentioned above are atlomparisorfirst method without matching

processesThe former two methods consider some semantitiseicomparison processhus,they avoidcompaing IDs

153 in IFC files. The latter two methodsclude some measures to accelerate the comparison process; specificalirdhe t
154 methodconrstructs two hierarchicatructuregor two IFC files and uses an iterative bottoqmprocedure to compare them,
155 while the fourth methoduses &hash function to calculate signatures for each instancehamdises the signatures to
156 establish candidates foomparisonNote that signatusgor fingerpring) have been widely used imstancedetection and
157 classificatiofi31], andit is a simplified representatidhatoften carrieghe most important information of a@nstance.

158 The comparisotifirst methodfirst uses a comparison process to classify instances as changed or unchanged, which can
159 avoid major errorsTherefore the example of exchanginige locationsof two identicalcolumns will not be detected as
160 changeby this methodHowever, mosturrentcomparisorfirst methods have no matching process, which may result in
161 minor errors. For example,tiie geometry aén instance has been modifaatlits ID is notchangé, the current geometry
162 basedcomparisorfirst) methodmaydetect this as deleted and addlengs, but actuallyjt should beamodifiedchange.

163 In fact, when the ID is reliablé can be used to identify a changed instance in FieaBnew or modified from File A,
164 which is the oly way to eliminate minor errors. Thus,tife matching process is executed afte comparison process,
165 minor erroscan be eliminated immediately when the ID is reliable.

166 A significant defect of the comparisdinst method isthat it istime consumingThe @mparisonprocessusually

167 consumes much more time than matchHiegause instances in BIM modgisssessnany propertiessuch as parameters,
168 location, geometry, etc., miglg the comparisorirst method much slowefhisis an important reason why thisethod

169 is not commonly used.

170 2.3 Summary

171 Toillustratethe difference of detection results between the matefiisigand comparisofirst methods clearlykigure
172 3 shows a typical design changeaiBIM model andthe detection results of tisetwo methods. In this figure, the ID and
173 other propertiehaveblue and yellow backgroundeespectively C, G, and L are thecategory,geometry, andocation,
174 respectivelyln Figure3, thedetection result of the compariséirst method is correct, but the result of the matcHirgj

175 method has some errors.

#1|cLel 1 #1| C1 Gl L2|

(#2| c1 61 L2 #2|c1 61 L1
Modify Geometry

| #3| c3e3 3] — " #3| C3 G6 L3

‘#4‘ C4 G4 L4‘ Delete&recreatesame‘ #5‘ C4 G4 L4‘

a) Exemplary design change (ID is reliable)

[#1\ Cl Gl L1] |#1] C1 G1 L2 Modified Cl Gl L1]|#1| | C1 GL L1 #2 ||unchanged
[#2| c161 12| |#2] c1 G1 L1|Modified c1 G1 L2| #2]| | c1 G1 L2| #1 ||unchanged
f#s\ C3 G3 L3| |#3]| C3 G6 L3 Modified Cc3 G3 13| #3| | c3 G6 L3 #3 || modified
Deleted #4 | C4 G4 L4| |#5 | C4 G4 L4| Added C4 G4 L4 #4| | ca G4 L4] #5 || unchanged
176 b) Detection result of matchiFfgst method c) Detection result of comparisdinst method
177 Figure3. Detection results of the matchifigst and comparisofirst methoddor a typicalchange.
178 To sum upthedetection performances of these tiypesof methodsTablel showsthedetection correctnessdtime

179 consumption of the. It can be seen fromable 1 thatthe comparisodffirst methodis the only onecanachievehigh
180 correctnesi all casesbut it has the lowest efficiency. Actually, minor egrareunavoidable when the ID is unreliable
181 consequentlyjn this researchtheseunavoidable minor errerwill be ignored when considering the correctness of a
182 detection methodsothe comparisotifirst method is considered correttowever,becausehe current comparisefirst

183 method is based ondttlassification criterion (added/deleted/modified) which consmidyssyntactic changes,danonly

184 obtain syntactic correctness but cannot deal with semaiitiesefore this method will still detect meaningless design
185 changeesultswhen used in pdice. For examplenilFC, thegeometricexpression of an instance can be changed &om
186 solid model toa surface model while maintaining the meaniagdthe local coordinate system and the placement of an
187 instance can be changed simultaneously while keesngjobal locationfixed, however,these two example changes
188 cannot be identified semantically by the current compatigsnmethod Additionally, the change of aimstanceproperty
189 whichis meaningless for designeskould not be regarded asemantiadesignchange and it cannot be handled correctly
190 by thecurrentcomparisorfirst method.

191 In summary,the definition of semantic design changes is c¢lear, and is always mixed with data changEse
192 matchingfirst method regards data changes as design changes, and & iresulbong and meaningless results. The
193 comparisoHirst method proposed in other researclaelslresses the issue of-H2nsitivily and considers some semantics
194 of instancesbuttheystill cannotcategorizelesign changes and data chang@sectly, thus,meaningless desigrhanges

195 still exist in its detection resgltAdditionally, the time consumption of the comparidwat method is high.

196 Tablel. Detection performances tife matchingfirst and comparisofirst methods

M C (nom) C
ID is reliable Major error X (0] (0]
Minor error e} X e}
ID is unreliable Major error X (@) O
Minor error X X X
Time consumption Low High High
197 Note.M is the Matchingfirst method C (no m) isthe Comparisoffirst method (without the matching process);
198 O means the method can eliminate tiyjse oferror, andX meanscannot eliminate
199 3 ResearchMethodology
200 The objective othis researchs to detect semantic design changes with high correctness and efficiadeyfivestep

201 methodology is utilized Kigure 4). The methodology consists of five parts: review, semantic change classification,
202 detection method, implementation, and validation. Each part is introduced as follows.

203 In the review of relatedorks, we concluded th#te unclear definition of design changes is the reason for meaningless
204 detection results. Therefore, although the current compafistrmethods address some issues in the matedhistg

205 method, they may still detect meaninglessults,because the classification criteritor design changetheyadopt does

206 not consider the semanticsBIM models Additionally, the time consumption of the current compariiat methods is

207 high.

208 To address these issues and achieve our olgsctire focus ontwo aspectsl) classification, whichprovidesthe

209 definition of semantic design changes atebworks asa criterionand guid€ior design change detecticand?2) detection,

210 which is a method used to identify changes according to theifdtation. First, we propose a semantic classification of
211 design changeabatdivides data changes into three categories and classifies design changes into three lexélssigm

212 viewpoint Next, we improvethe comparisoiiirst methodby consideringthe proposed classification criteriothus

213 enablingthe detection ofsemanticdesignchangesFinally, to further improve the efficiency, we addysh codg of

214 instancedo accelerate the comparison processhefdetectionmethod and thetime complexiies of our method and

215 previousy proposed methods aaésoanalyzed.

216 To verify the performance of the proposed methitnis researcimplementsour method and previolysproposed

217 method in Revit At the beginningall the implemented methodare testedvith manually created design changes in
218 multiple BIM modelgwhichincludealmost all types of changand have different complexitgvels), and theiefficiency

219 and correctnesare comparedvieanwhile,detection performances tife proposed methahdinvited designersare also

220 measured and compared to further show its beréfdit, a group of junior designergasinvited to make design changes

221

222

223

224

225

226

227
228

229

230

231

232

233
234

235

236

237

238

239

240

241

242

243

244

245

in a BIM model individually the modified modsland documents recording design changes are saved in two different
repositories. Then, eadkesignerrandomly chocosesone model (except for the one he/she creatéadym the model
repository and try his/her best to fitite design changes manuaHlynally, our method is utilized to detect design changes
automatically, andhe performancef our methodand the designeis compared

Criterion

Validation

Semantic chang{

Classification of desigh classification Considering Existing method] Detection performance
changes Change categories Guide semfntics sting metho (correctness &. efficienc

Detection methods of

design changes Hash code

] Our methods |
]] Enhancement
acceleration]]

Change levels

Figure4. Overview of the research methodology.

4 Semantic Classificationof Design Changes

As mentioned above, design changes and data changes are mixed used currently and what kind of changes are valuable
or semantic for designers is not clear. Therefthis research will first propose a semantic classification of design changes
[32] to illustrae and define the semantic design changist,the data changearedividedinto three categorieshen,the
design changeare classified into three levels fromdesignviewpoint to identify the semantic design changes in BIM

models.

4.1 Categories of Daa Changes
As two differentmodel schemadpoth IFC and Revit data models are based on the etjiestted modeling method,

representing the same design data of a building or facility in different ways. In either of these two models, datagpf buildin
elemens can be described by instances (objects) that possess many prdpen@ally, br each instance of a BIM model,
its data information can be divided into three categories: 1) the characteristics and specifications of an instanbe such as t
name,material, size, etc., which is called property data in this research; 2) the information shows the location, shape,
geometry, etc. of an instance, which is called appearance data; 3) the information to connect other instances, such as the
level of an instace, the relationship of a wall and a door, etc., which is called relationshipAdatadingly, we can
classifythedata changes in each categokysummary othedata changes in each categisrghown in Table 2.

Property dataepreserginstancepropeties such as parameters or other esgecified attributes. In IFC, an IfcProperty
can be added to or deleted from an IfcPropertySet; the value of an IfcProperty can be modified; the namelefimedser
IfcProperty can be modified; and the order aPifopery in anlfcPropertySet can be changed.

Appearance datepresentthe 3D appearances of instances, such asghemetry and location. In IFC, the attribute

246

247

248

249

250

251

252

253

254

255

256

257

258

259
260

Representations IfcProductRepresentation is a list of IfcRepresentation (includingestegresentation), where each
member defines a valid representation of a particular type within a particular representation Thatekbre instance
geometrycan be added, deleted, and modified via IfcRepresentation. The representation methidcRefpaesentation

can be changed by changing the subtype of an IfcRepresentationltem in Items of the IfcRepresentation, e.g., from
IfcFaceBasedSurfaceModel to IfcSolidModel. Additionally, the transformation property of an IfcProduct can be modified
by its ObjectPlacement.

Relationship data represents the relationships between two or more instances, such as the relationship between a dool
and a wall. In IFC, instanceelationshipsare represented by IfcRelationship, which connects instatiresigh
Relatingjectand/or RelatedObijects attributes. Classes such as IfcBuildingElamamhany attributes defined by a set
of IfcRelationship (or its subtype), e.g., IsDecomposedBy, HasAssociaiutisDefinedBy. Relationships can be added,
deleted, and modifieth these attributes, arttiere are two types ahodificatiors: modifying the related instance or the

relationship itself.

Table2. Data changes in each category

Category Data Change Description Example in IFC
Property Added Add a new instancproperty Add an IfcProperty in HasProperties of an IfcPropertys
data
Deleted Delete an existing instangeoperty Delete an IfcProperty in HasProperties of
IfcPropertySet

Value Modifed Modi fy a propertyd

O
2]
<

Modify the NominalValue of an IfcPropertySingleValue

Name Modified Modi fy a propertyds n Modifythe Name of an IfcProperty
Order Changed Change the order of instanpmperties Change the order of IfcProperty in HasProperties of
IfcPropertySet
Appearance Added Add a new instance geometry Add an IfcRepresentation in Representations aof
data IfcProducRepresentatiote.g.,Representatioaf [fcWall)
Deleted Delete an existing instance geometry Delete an IfcRepresentation in Representationsarof
IfcProducRepresentation
Geometry Modify the geometric shape of an instance Change the IfcRepresentation in Representationano
Modified IfcProducRepresentation
Transformation Modify the transformation property of ar Change the lfcObjectPlacement in ObjectPlacement o
Modified instance, such as translationrotation IfcProduct
Representation Change the geométr represerdtion, such as Changethe subtype of an IfcRepresentationltem in Itel
Modified converting a solid model to a surface model of anlfcRepresentation
Relationship Added Add a new relationship between two instances Add an IfcObject in RelatedObjects of ¢
data IfcRelDecomposes
Deleted Delete an existing relationshippetween two Delete an IfcObject in RelatedObjects of
instances IfcRelDecomposes
Instance Modify a related instance Modify the data of an IfcObject in RelatedObjects of
Modified IfcRelDecomposes

Relationship Modify a relationship betweemo instance¢e.g., Change an IfcObject in RelatedObjects of
Modified change the relationship betwee& B8 to A& C) IfcRelDecomposes

4.2 Levels of Design Changes

As mentioned abovealata changes are insufficient to be regarded as design ch@hgesfore, we propose a three

261 levelsemantic classificatioof design changes (example changes of eachbbaseld oFC and Revit are shown Figure

262 5andFigure6 respectively.

263 First, all data changes should be semantically identified at the instance level as discBsstdnia.1.

264 Next, from the perspective of the type level, changes in instances may be caused byinteatyes For example,
265 the geometric changes of multiple instances may be causeddmmetry change of the tyfram whichthese instances
266 inherit. To optimize the detection result, if changes in some instances are caused by ichanges, the source of the
267 change should be identified, and the changed instances should be grotipety .

268 Finally, from the perspective of the modeldévwchanges in instances may be meaningless. For example, exchanging
269 the locations of twadenticalcolumns should not be detected as a change bettamisgodels the same before and after
270 t he change f r omointaSuctimeaninglesechahgesad netwelagged as changek addition, similar
271 tothe type level, instance modifications in relationship data should be detetttechatel level to identify the source of
272 the change. For example, modifying the elevation of a level may resudiripy ahanges in the related irmstas therefore,
273 the source of the change (i.e., the madiflevation) should be identifiednd the related instances should be grouped by
274 that change

275 In summary this research defines the semantic design change as follostsingds regarded as a semantic design
276 change if and only ithe changés semantic at alevels, namelyinstancdevel, typelevel, and model levelt can be seen,
277 datachangesanonly involve semantichanges aheinstance levelsuch changes do not involgemantics ate higher

278 two levels. Therefore, we can conclude that the semantic classification criteriothdatetection methodnvolves

279 identifying semantic changes at three Isvéheinstance level (where changes are data chanipeg)pe level, andhe

280 model level.

281

282

283
284

285

286
287

288

#101: IfcColumn #101: IfcColumn

#101: IfcColumn #102: IfcColumn

ID=0001 ID=0001 ID=0001 1D=0002 ID=0001 ID=0002
Name="Round Column’ Name='Round Column’ Name= Name= Name= Name=
‘Round Column' 'Round Column’ 'Round Column’ ‘'Round Column'

#61: |fc Rel Associates Material

#51: | fc Material

Name="Concrete’

#52: | fc Material

Name="Steel'

#12: |IfcCartesianPoint
Coordinates =(1.,1.,0.)

#12: |IfcCartesianPoint #12: |IfcCartesianPoint

Coordinates =(0.,0.,0.) Coordinates =(0.,0.,0.)

#22: IfcAxis2Placement 3D
#32: If cLocal Placement

#101: IfcColumn

#22: IfcAxis2Placement 3D

#32: If cLocal Placement

#101: IfcColumn

#102: IfcColumn #102: IfcColumn

ID=0001
Name="Round Column'

ID=0002
Name="Round Column'

ID=0001
Name='Round Column'

ID=0002
Name="Round Column'

#31: If cLocal Placement #31: If cLocal Placement

#21: IfcAxis2Placement 3D

#11: IfcCartesianPoint

#11: IfcCartesianPoint

Coordinates =(0.,0.,0.) Coordinates =(0.,0.,0.)

¢) Meaningless changes at model level

Figure5. Example changes at three levels in IFC

Location: (x1, y1)Y (x2, y2) Family section: 300450 mmY 300 300 mm
Top level: L3Y L4 Family material: Concreté Steel
Length: 2000mn¥ 3000 mm

a) Changesit instance level b) Changesat type level ¢) Meaninglesshanges at model level

Figure6. Example changes at three levels in Revit

5 Detection of Semantic Design Changes

5.1 Improved Method by Considering Semantics of Design Changes

Detecting semantic design changas be achieved bgetecting design changes under the semantic classification

criterion, which can bebtainedvia the comparisofiirst methodconsidering the following requiremends described

289 below

290 1. Meaningful properties

291 When comparingroperty data, only the meaningful properties shoulddmeparedmeaningless properties should be
292 ignored.Some propertiesf an instance are meaningless for designers, such as the IfcOwnerHistofylefefore a

293 changen these properties should not be regardedhasstancesemantic change, armsdichpropertes should be ignored

294 duringcomparison of two instances. In adaiit, propertiegshatcan bederived(or inferred from other propertieshould

295 be ignoredduringthe comparison. lthis researchthe above two kinds of properties are called meaningless properties
296 theremainingproperties of an instance are called meaningful properties. Whas comparng two instances, only the
297 meaningful properties should be compared.

298 2. Order of properties

299 When comparingroperty datathis research assumes tttz¢ order change in propedgta should not be regarded as
300 a semantic change. Some properties are collections of many other properties, such as the IfcPropertySet in IFC and the
301 Parametersn Revit. Therefore, a detection method should compare these property sets regattigseraiersbecause

302 theorder ismeaningless.

303 3. Semantics of geometry

304 When comparing appearance data, the geometry of instasbeuld be compared semantically.BIM models, the

305 geometry of an instance can be represented in different [@ay&4] For examfe, the geometry of an instance can be
306 representedis sweeping,constructive solid geometryCEG), or B-Rep in IFC. Therefore, geometriesth different

307 syntactic data should be compared by their semantic meaning

308 4. Reference ID

309 When comparig relationship data, the related instamshould be comparechther thanthe reference IR Some

310 properties are references to other instances, such as the STEP,IB f£4.2 4 ¢)[35]iamd theLEVElld in Revit. The

311 instances associated with these prtpe are semantic, buheir referencelDs are not. Thus, when comparing these
312 properties between two instances, the instances refeerlgdthe properties should be compared instead of the properties
313 themselves.

314 5. Changes in types

315 Changes in instancesay be caused by changes in a fythesechange®ccuratthetype level. In IFCpneapproach

316 for detecing changes athe type level isusng the RelatingObject and/or RelatedObjects attribofdécRelationship. If

317 changes occur to an instantatis related to many other instances, the changes in the related instances caused by this

318 changednstance should be grouped thys instance However, detecting changesthe type levelis difficult in Revit

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333
334

335

because types (family types) are not storedhstamnces (elements). An alternative to datgathanges athetype level is

to list all the categories of changed instances merarchicalview allowing usesto view any singlec at egor y 6 s

instances.

After consideringall therequirementabove, the compariseiirst method can detect design changes under the semantic
classification criterion. The flowchart ofithimprovedcomparisorfirst methodfor semantic designhangedetectionis
shown inFigure7, andthe InstanceEqual function usedrigure7a is shown irfFigure7b. In Figure7b, the InstanceEqual
function takes only the meaningful properties wio instancesand then compares the equality dheseproperties
semantically, whichincludesignoring the order of propeks, comparing geoméds in a unified data format, and

compaing the referred instansénstead ofthe reference propertieote that change in types is not considereBigure

7b because it has an alternative to detect.

So far, only one significant disadvantaganainsfor the comparisoffirst method its high time consunption. This

issue will be addressed in th@lowing section

(An instancenstlin File A)

Comparison An newinstancenst2

v in FileB

No

instances inFile B
have been compared?

Unchanged Yes

Yes No

a) Comparisorfirst method(improved)

Algorithm 1 Compare thesemantic equalityf two instances

Input: two instancesnstl, inst2
Output: whetherinstlis equal tanst2
1. function InstanceEquaistl, instl

2: propsi1, al meapngf@ properties ahstl, instan the same order
3: fpropsl.length I props2.length

4: return false

5: end if

6: for i = 1to propsl.length

7: if not PropertyEqualfrops1[i], props2[i])

8: return false

9: end if

10: end for

11: return true

12: end function
13:
14: function PropertyEqualfropl, prop2

15: if typeofpropl) | tprpgPe o f (

16: return false

17: end if

18: if proplis a geometry property

19: geoml, qgeometris ofropl, prop2n a unifieddata format
20: return geoml== geom2

21: else if proplis a referenceproperty

22: ri nst 1, referednirstan2es Wiropl, prop2
23: return InstanceEqualinstl, rinst?

24: else

25: return propl == prop2

26: end if

27. end function

b) Algorithm of comparing semantic equality of instances used

Figure?. Flowchart of themprovedcomparisorirst methodfor semantic desigonhangedetection

5.2 Acceleration Based on Hash Code

A hash function is any function that can be used to map data of arbitrary size onto data of a f[8&j. dibe values

returned bya hash function are called hash codes. An important feature of hash faigtibat the same dataill be

c hi

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

assigned the same hash codevertheless, havinilpe same hash code does not mean that the original data are the same
(but they likely are). bf erent data with the same hash cdéalensa hash collisionA good hash function withave a very
low probability of hash collisions.

The time consumption of the comparison proahssng detection is directly proportional to the number of times of
data (e.g.properties) reading. However, if we calculate hash codes for all instances ahdsete filter out unequal
instances in the comparison process, the time consumption can be greatly;redlseguentiythe meaningful properties
of two instances neetb be read and comparedly when their hash codes are equal. Moreover, if the probability of hash
collisions is zero or very low, we can directly assert that two instances are equal if their hash codes are equalhahich furt
reduce the time consumptia

To detect semantic design changes, the key point is that the hash code of an instance should correspond to the semanti
classification criterionTherefore the hash code of an instance should change if and otthatifnstance is changed
semantically, which also implies that the remflcomparingt wo i n st a n c (@sofing haahscallisienphduéd s
be identical to thaproducedusing the comparison process proposedaation 5.1 Generally, instance hash code
calculationinvolves calculating the hash codes forth# meaningful properties of the instance @hencombining them.
Therefore, only hash code$the meaningfulproperties of an instance should be calculated; the property set order should
be ignore¢ geometrieswith the same semantics should have the same hash codéhearalerence t@rother instance
should be replaced by ttmash code of theeferencedinstarce Meanwhile,hash codesf different properties of a single
instancecan be combinethto oneinstance hash code using a paptgserving operatauch asKOR [37]. In this way,
the order change of properties is omitted automatically, thus creatimgstot solution for comparing two instancéhe
algorithm of calculating the hash code of an instatmsidering semantiggoposed irthis researcis shown inFigure8.

Figure 9 shows the flowcharts of theashcodeacceleratedimproved comparisorfirst) methods proposed ithis
researctfor semantic desigohangedetection In this figure, hash codes of all instances in both File A and B have been
calculated previously by the algorithmhkigure8. In Figure9a, the InstanceEqual function is also the Algorithm 1 shown
in Figure7b , and the ANoo0O woctuhrenagettide hashocolisionInfrigue®dls thet ghiekhashcode
acceleratednethod does not include the comparison probessuseét assumesghatthe probability of hash collisions is

Zero.

362

363

364
365

366

Algorithm 2 Calculate the hash code of an instance considering semantics
Input: an instancenstl

Output: the hash code ahstl

1. function GetlnstanceHashCode$t1)

2: hashcod& 0

3: p r o p sllme&ningful properties dfistl

4 for i = 1to propsl.length

5: hashcod&f hashcod&XOR GetPropertyHashCodappsi[i])
6: end for

7: return hashcode

8. end function

9:

10: function GetPropertyHashCo(gropl)

11: if proplis a geometry property

12: h a s h ¢ dabske codé of geometry pfoplin a unified data format
13: else ifproplis a referenceroperty

14: hashcodé’ hash code of the referred instancepmfpl

15: else

16: h as h ¢ dabte code giropl

17: end if

18: return hashcode

19: end function

Figure8. Algorithm of calculding the hash code of an instanmnsidering semantics

(An instancenstlin File A)

An newinstancenst2
in FileB

Comparison An newinstanceinst2
Y n F":e B (An instancenstlin File A)
ash codes dfistlan :
inst2are equal? Comparison
No
) 4
Yes ash codes ahstlan
inst2are equal?
InstanceEquailistl, inst3 ?
No
No Yes
Yes
All instances irFile B
A 4
Unchanged
A4 | ____________

YCJ N
Modified Deleted

a) Hashcodeacceleratedhethod b) Quickhashcodeacceleratednethod

Figure9. Flowcharts of théashcodeacceleratedimprovedcomparisorfirst) methodgor semantic desigohange

detection

367
368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

5.3 Time Complexity Analysis

For conveniencehis researclassumes thdhe total number of instances in both Files A and 8 &ndthat thetime
consumption oEomparing two instancéesqualityis 1 s,while comparing the IBor hash codeof two instancesequires
pfa s.

The matchingfirst method executes the matching prodess times and the comparison procés® times thus,

its total time cost i®y — 0 O 0 p — .Inourtestd is approximately56000, which is muchargerthan(;

therefore,it can be assumed that p. Thus, the time complexity of the matchifigst method ig) 0 . However,it

should be noted that this methodrnfeasiblewhen the ID is unreliablbecausets detection result contains both major
and minor errorsThereforeits time complexity is onlyapplicablewhen the ID is reliable.

Thecomparisorfirst method executes the matching prodess times and the comparison procéss$) times, but
the latter can be reducediiol in one case. When the ID is reliable d@helchange is small, as shownRigure7, almost
every firstcomparisorof two instances will returii Y e lsecause the order of instanm@mparisonss usuallybasedon

the ID. Therefore, the execution times of the comparison process will be reduicad tm this case, and the total time
consumption of the comparisdinst methodwillbe 6 0 — 0 0 .However, when the ID is unreliablethiechange

is large, the execution times of the comparison proaes8 0 and cannot be reduced. In this case, the total time
consumption of the comparisdinst methodwill be 0 0 — 00

For the haskcodeaccelerateanethod, the equality of two irestices will be compared if and only if their hash codes
are equalConsideringhe probability of hash collisi@is very low, almost all unequal instances are filtered out before the
equality comparisonoccurs Therefore its execution times of the compsoin are always0 0 . Becausethe time

consumption of calculating the hash codes is @ldb , the total time consumption of theshcodeacceleratednethod

isb 6 0 — 0 0 .As for the quickhashcodeacceleratednethod, it does not compare the equality of two

instancessoits total time consumptioni8 0 — 0 0 .

Table3 summarizeghe time complexities of the four meth®in two condition@nd showghat the twohashcode
accelerateanethods perform best overall. Actually, the quigshcodeaccelerateanethodis faster than théashcode
acceleratednethodbecausehe former does not doubtheck the equality of two instances. In addition, wttenlD is
reliable, the time consumption of the quitkshcodeacceleratednethod and the comparisdinst method may be close
because both will read the meaningful properties of all instances &t tinebashcodeacceleratednethod mayevenbe
slowest in this case.

A userfriendly method exist$o eliminateanypossible hash collisions in the quicashcodeacceleratednethod, that

396 s, executing thdashcodeaccelerateanethod to check the deteatioesult in the background or another thread after the
397 quick hashcodeacceleratednethod iscomplete Since the hash codes have been calculated by the lsasticode

398 acceleratednethod, the doubleheckng process can save thatlculationtime. Finally,the total time consumption of this

399 methodis close to that of theashcodeacceleratednethod, but the user can obtain the detection result as soon as the

400 quick hashcodeaccelerateanethodis complete

401 Table3. Time complexities of the founethodsn two conditions.
Condition Time Complexity
M C Hc Qhc

ID is reliable and change is sme 0 0 00 60 00

ID is unreliable or change islarc N/A 0 0 060 00

402 Note.M, C, and(Q)Hc are the Matchindirst, Comparisorirst, and (QuickHashcodeaccelerateanethods, respectively.

403 6 Implementation and Results
404 Boththe proposednethod in this resear@nd existing methodare implementeth Revitfor testing purposegndthen

405 4 groups oBIM modelsare developedsabaselinedatasefor validating thedetection methods. Finallperformance of
406 the proposed method and existing methods as well as invited designers are compared to highlight the advantages of our

407 method

408 6.1 Implementation of the Detection Methods

409 According to the four detection methods: matchiingt, comparisorfirst, hashcodeacceleratedand quickhashcode

410 acceleratednethods, thisesearctdevelogs four algorithms under the semantic classification criterion based dh/A¥lv

411 using theC# languageln this implementation, the four algorithms shtresamefunction of instance comparison which
412 considers the semantics of design chanfess, both the matchinfiyst and comparisofirst algorithms represent existing
413 methals with an improved comparison process.

414 Figure 10 shows the core codestings forthese four algorithms and the key differences between the lastatteee
415 indicatedby thered rectanglesThe target of these algorithmst@sclassifyall the element IDs into four listsaddElds,

416 delElds , modifyElds , andunchangedElds ; these four listsepresent added, deleted, modified, and unchanged elements
417 respectively. IrFigure10 c) and10d), the twohashcodeaccelerate@dlgorithms compare the hash codes of two elements
418 by usingEldHashCodes1/2, which storstheprecalculatedhash codsfor all theelements in one file, areddHc1/2.Value

419 represents the hash code of an element in File A/B.

420
421

422

423

424

425

426

427

428

429

430

431

432

/IList<Element> Eles1/2: all elements in File A/B, ordered by Id.
int i=0,j=0, eldli, eld2j;
while (i < Eles1.Count && j < Eles2.Count)
{
eldli=Eles1][i].Id.IntegerValue;eld2j=Eles2[j].
if (eldli< eld2j)
{ delElds.Add (eldli); i++;}
else if (eldli==eld2j)

Id.IntegerValue

{
if (eleEqual (Elesl[i], Eles2[j])) unchangedElds.Add (eld2j);
else modifyElds.Add (eld2j);
i+

}

else /lif(eldl > eld2)
{ addElds.Add (eld2j); j++;}

while (i < Eles1.Count)
{ delElds.Add (Eles1][i].
while (j < Eles2.Count)
{ addElds.Add (Eles2[j].

Id.IntegerValue); i++; }

Id.IntegerValue); j++;}

/luse eldEles _ in foreach loop to use Remove()
var eldElesl_= new Dictionary< int , Element>(EldElesl);
var eldEles2_= new Dictionary< int , Element>(EldEles2);

foreach (vareel in EIdElesl)
foreach (varee?2 in_eldEles2)
lif (eleEqual (eel.value, ee2.Value)) |

unchangedElds.Add (ee2.Key);
eldElesl_.Remove(eel.Key); eldEles2_.Remove(ee2.Key);
break ;

foreach (vareel in eldElesl_)

{
if (eldEles2_.ContainsKey(eel.Key))
{ modifyElds.Add (eel.Key); eldEles2_.Remove(eel.Key); }
else
delElds.Add (eel.Key);
}

foreach (varee2 in eldEles2_)
addElds.Add (ee2.Key);

a) Matchingfirst algorithm

b) Comparisoffirst algorithm

/IEleHashCodes1/2 have been initialized and calculated previously
var eldHCsl_= new Dictionary< int , long >(EldHashCodes1);
var eldHCs2_= new Dictionary< int , long >(EldHashCodes2);

foreach (vareldHcl in EldHashCodesl)
foreach (vareldHc2 in eldHCs2)

if (eldHcl.Value == eldHc2.Value &&
eleEqual (EldElesl[eldHc1.Key], EIdEles2[eldHc2.Key]))

{
unchangedElds.Add (eldHc2.Key);
eldHCs1_.Remove(eldHcl.Key),eldHCs2_.Remove(eldHc2.Key);
break ;
}
foreach (vareldHcl in eldHCsl1)

{
if (eldHCs2_.ContainsKey(eldHcl.Key))
{ modifyElds.Add (eldHc1.Key); eldHCs2_.Remove(eldHcl.Key); }
else
delElds.Add (eldHcl.Key);

}
addElds =eldHCs2_.Select(idhc => idhc.Key). ToList ();

/lquick: assuming no hash collision will happen
var eldHC1l_= new Dictionary< int , long >(EldHashCodesl);
var eldHC2_= new Dictionary< int , long >(EldHashCodes2);

foreach (vareldHcl in EldHashCodes1)
foreach (vareldHc2 in eldHC2)
lit (eldHc1.Value == eldHc2.Value) |

unchangedElds.Add (eldHc2.Key);
eldHC1_.Remove(eldHcl.Key); eldHC2_.Remove(eldHc2.Key);
break ;

}
foreach (vareldHcl in eldHC1.)
{
if (eldHC2_.ContainsKey(eldHc1.Key))
{ modifyElds.Add (eldHc1.Key); eldHC2_.Remove(eldHcl.Key); }
else
delElds.Add (eldHcl.Key);

}
addElds =eldHC2_.Select(idhc => idhc.Key). ToList ();

¢) hashcodeacceleratedlgorithm

d) Quickhashcodeacceleratealgorithm

Figure10. Core coddistingsfor the four algorithms

The eleEqual()

semantically equal. It selects 5tbk 22 elemenpropertiesn Revit as the meaningful properties, as showmable4.
Note that, generallythe geometry and location of an instance need to be considered todétiwezver,in Revit, the
locationcanalsostoreelementgeometic informationsuch as LocatidBurve, and onsidering locationvhile ignoring the

geometry of an element ssifficientto obtainaccurate detectioresults Therefore Table4 regardslemenigeometry as a

function in Figure 10 is used to judge whether @he meaningful properties of two instances are

meaningless properfgr the convenience of implementation.

Finally, all these algorithms are integrated into a WPF applic&tioRevit change detectioif his application isised
to test these algorithms in the next section. The alternafipeoach fodetecing changes at the type levelsdescribed
in Section5.1) is adopted in this applidah. Therefore all the categories of changed instances will be listed in a tree view,

allowingusestoviewany singlec at egor y d s

changed el ement s.

Table4. Meaningful and meaningless properties okamenin Revit

Meani pgbébpeé

Meani ngl ess p

433
434

435

436

437

438

439

440

441

442

443

444

445

446

Categor I d Groupl

Locatio Geometr Il sTr an
Par amet € Levell Il sValid
Na me Assembl yl Owner Vi

Boundi ngPar amet
CreatedP Pinne:
Demol i she Uni que
Desi gnOp Vi ewSpe

Documen Wor kse

6.2 DevelopedBIM Models
Lin et al.[32] developed 11 exemplary BIM models, named M1, that can be used as test caalkddiorg detection

methodsBecause thesBIM models are simple and containly a few instances, thigsearchdevelops two other grosp
of BIM models that are more complex and can also be used as testAlhsbasethree groups of Revit BIM models
follow the samalevelopmentules therefore each group of BIM models has 11 modelse of them is theriginal mode|
andtheother 10 are derived models tlatlude onlyone type of change from the original model as definegkation4.
The namesof the original models of these three groups are M1, M2, and\Mi13is a simple structure fram#2 is an
example housandcontains architectural and structural building informatiand M3 is a Revit sample project named

rac_advanced_sample_proj€ettp://www.autodesk.com/reviacadvancegsampleproject2018eny. Figurell shows

screenshots of the three original BIM moddiable 5 shows the design change infmation of these BIM model#
repository containinghese three groups BIM models and their detailed descriptiomasestablishedn GitHubandcan

be foundat https://github.com/ZhoiYucheng/DesigrChangeBIM -Models

The architectural model ofdassroonbuilding of a primary school, named M4, is also used in the test to compare the

detection performansef designers and thenplementednethod. Figure12 showsa screenshot ahis model

http://www.autodesk.com/revit-rac-advanced-sample-project-2018-enu
https://github.com/Zhou-Yucheng/Design-Change-BIM-Models

c) M3

447
448 Figurell. Screenshots of the original BIM models M1, M2, and M3.
449 Table5. Designchange information of the three groups of BIM models M1, M2, and M3.
Model Name? Category of Dat&Change Level of Design Change
Mx - -
Mx_All-A Added in P, Aand R Instance
Mx_All-D Deleted in P, Aand R Instance
Mx_AII-DA(M) ¢ Deleted and theadded in P, A and F Model
Mx_A-MG Geometry modified in A Instance
Mx_A-MG(T) Geometry modified in A Type
Mx_A-ML Location modified in A Instance
Mx_A-ML(M) ¢ Location modified in A Model
Mx_P-MV Value modified in P Instance
Mx_R-MI(M) Instancemodified in R Model
Mx_R-MR Relationship modified in R Instance
450 2Mx denotesvi1, M2, or M3.
451 ®P, A, and RienoteProperty data, Appearance data, and Relationship data, respectively.

452 ¢ These two models contaimly meaningless changes (delete and recreate the same instances or exchange locations).

453

454

455
456
457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

Figure12. Screenshot of the BIM model M4.

6.3 Performance Comparison
6.3.1 Proposed Method and Existing Methods

With the developed application, thissearch testthe performances (correctne&stime consumption) of the four
detection algorithmby detecting the changes between derived and original modelsfirsttiaree groups of BIM models
(M1i M3). Eachtestwasperformed twice in two differentomditions: the ID is reliable or unreliabigherethe ID of every
elementwaschanged randomlynderthe unreliable IDcondition.

Figure 13 shows the detection results of M3_AIA(M) when the ID is reliable. Ifrigure 13a, the matchingirst
algorithm detects all changes but includes magegs changes. However,kigure13b, which shows the detection result
of the other three algorithmsince their detection results are the spriiee detection result ighat all elements are
unchangedwhichis correct. Because the model M3_-BIA(M) (deletes some elements and recreates the same one) only
contains meaningless changes. Moreover, it can be concluded that hash collisions do not oecuwvdmakhcode
acceleratedlgorithmsbecauseahe detectiorresultof the quickhashcodeacceleratedlgorithmis the same as those of
the comparisotfirst andhashcodeaccelerateclgorithms.

When the ID is unreliable, the detection result of the niagefirst algorithm is totally wrongpbecausealmost all
elements will be judged as changed. However, the detection results of the other three algorithms are still correct and are
the same ashown inFigure13b. However,in this condition, the time consumption of the comparifiet algorithm is
highto the point where it isnacceptable, while the tintdnsumed byhe other twchashcodeaccelerad algorithmsis

only slightly higher tharunder thereliableID condition.

473
474

475

476

477

478

R RevitChangeDetector [Time Cost: 7.595] -
Old File Path D:\EiE\Paper\2019-9 Automation\Rvt Project\M3(rac_advanced_sample_project) - 2020\M3.rvt
Mew File Path D:A\BE\Paper\2019-9 Automation\Rvt Project\M3(rac_advanced _sample_project) - 2020\M3_All-DA(M).rvt Browse
Algorithm | Matching-first v Detect Change
4 Al No. Elementld Name CategoryName [Deleted Element]
WlAnalyticalNodes
VIStructuralColumns 1 201273 W250X49.1 Structural Columns \D: 201273
[¥IColumnAnalytical 2 201278 450mm Structural Columns
iO‘thers 3 254083 Analytical Columns ===(Unchanged properties)===
[¥IMaterials . Name: W250X49.1
WLevels 4 254088 Analytical Columns Location: (-52.022307879, 22404654265,
[Views 5 254740 Analytical Nodes Image: <None> (Elementld=-1)
Elev 6 254741 (Deleted) anaiytical Nodes Column Style: 0
[VViewers 7 254742 Analytical Nodes EEIEQD’Y g"“fﬂ-"a: EG:UmnS(E:emem\g
[ATopographyContours) ategory: Structural Columns (Element|
i pography 8 254743 Analytical Nodes Base Connection: None (Elementld=-1)
3:[2:2?]6”]&.5 9 254744 Analytical Nodes Top Connection: None (Elementid=-1)
o . Design Option: -1 (Elementld=-1)
W05 Geolocations 10 254745 Analytical Nodes vmulg-ne: (5’.752350
éIOSlSIfelchGrld Phase Demolished: None (Elementld=-1)
[¥|Revisions Phase Created: New Construction (Eleme
gProjectlnformation Comments:
[¥|LoadCases Structural Material: Metal - Steel - 345 M
éSunStudy Column Location Mark: E-1(-6654)
WIColorFillschema Top is Attached: 1
WIHVAC_Zones Added Offset From Attachment At Top: 0.00000(
e - e s
ITopography Attachment Justification At Top: 0
Host Id: -1 (Elementld=-1)
: Top Offset: 0.981827
104 categories are selected.
& Base Offset: 2.000000
. . Top Level: 02 - Floor (Elementld=694)
12518 el it lected cat
20 EIE::::;: :;;ﬁ E:: categaries Base Level: 01 - Entry Level (Elementid=3
0 modified/ 10 deleted/ 10 added) 21 1 Project Phase Information Null Level: 01 - Entry Level (Elementld=311)
22 5 Line Weights Null Family and Type: M_W-Wide Flange-Colu
0 mod/8 del/8 add X Family: M_W-Wide Flange-Column (Elem
(Unchanged)
23 3 <Solid fill> g Null Type: W250X49.1 (Elementld=207176)
24 4 Diagonal up Null Family Name:

a) Detection result of matchirgst algorithm

R RevitChangeDetector [Time Cost: 7.68s] -
Old File Path D:\EiE\Paper\2019-9 Automation\Rvt Project\M3(rac_advanced_sample_project) - 2020\M3.rvt

Mew File Path D:A\BE\Paper\2019-9 Automation\Rvt Project\M3(rac_advanced _sample_project) - 2020\M3_All-DA(M).rvt

Browse
Detect Change

Algorithm | Quick hash-code-accelerated Comparison-first

| Matching-fi
4 VAl . No. Elementld Name | % e 'ng "S"‘ ; t]
éothers 1 1 Project Phase Information Begicidlesshiinge .)
|vIMaterials 2 2 Line Weight | Hash-code-accelerated Comparison-first
l+/|Levels 'ne, el\g s Quick hash-code-accelerated Comparison-first |
WIviews 3 3 <Solid fill> T < - ,JEI'tIES]:':=
[WIElev 4 4 Diagonal up Null Namg. Project Phase Information
WIViewers Location:
= 5 5 Diagonal down Null Category: (Elementld=-1)
éTupographyComours 6 6 Horizontal Null Category: (Elementld=-1)
¥lAreaSchemes orizonta . Designg. tion: -1 (Elementid=-1)
[IPhases 7 7 Vertical Null Famﬁy Napme'))
VII0S_GeoLocations 8 8 Crosshatch Null Type Name:
Iwl10SSketchGrid .
T 9 9 Diagonal cross-hatch Null
vIRevisions
[v|Projectinformation 10 10 Long Dash Null
[VILoadCases 1 1 Dash Null
%é“?“;ﬁé’ N 12 12 Loose dash Null
olorFillSchema
[FHVAC Zones 13 13 centre (Unchanged)nu
[VITopography 14 14 Double dash Null
IsiteProperty 15 15 Triple dash Null
¥ISketchLines 16 16 Dash dot Null
«WeakDims
17 17 Dash dot dot Null
104 categories are selected. 18 18 Dot Null
19 19 Overhead Null
12508 elements in selected categories || 5, 20 Hidden Null
0 elements are changed .
(0 modified/ 0 deleted/ 0 added) 2 21 Demolished Null
22 22 Grid Line Null
0 mod/8 del/8 add .
23 23 Default Materials
24 24 Default Wall Materials

b) Detection result of comparisdinst, hashcodeacceleratednd quickhashcodeaccelerate@lgorithms
Figure13. Screenshots of the results of the four algorithms for detecting M®AIM) when ID is reliable.

Table6 summarizes the averagime consumed byach ofthe fourtestedalgorithms.The test wereperformed on a
laptop with an Intel i79850H CPU (2.60 to 4.60 GHZ)\s Table6 shows,when the ID is reliable, the time consumption
of the matchingfirst algorithm is the lowest, and the comparisiost algorithm consunmsalmost the same amount of time.

The time consmnption of the quickhashcodeacceleratedlgorithm is approximately 5%~14%rgerthan that of the

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

496

497

498

499

500

comparisorfirst algorithm, and the difference decreases as the number of elements increases (from M1 to M3). However,
the time consumption of tHeashcodeacceleratedlgorithm is approximately twice that of the compari$iost algorithm,
and the difference increases with the number of elements.

When the ID is unreliable, the matchifigst algorithm is notpplicable The time consumption of tlewmparisorfirst
algorithm increasedramaticallybecause itgletectiontime complexityis0 0 (where0 is the number of elements in
the models). When the element number is approximately 5000 or 13000, the time consumption increases by a factor of
appoximately 10 or 50, which is unacceptable. In contréi& time consumed byhe other twohashcodeaccelerated
algorithmsis only 2%~5%largerthanthetime they consumeavhen the ID is reliable.

Therefore, we can conclude that the tionmmsumed byhe tvo hashcodeacceleratedilgorithmsis stable andD-
independent, while the time consumption of the compadfisshalgorithm is sensitive to ID. WheaheID is unreliable,
the quickhashcodeacceleratedlgorithm can save up @ U&7t u@t w @ Pof time compared to the comparison
first algorithm. Therefore,in most cases, the quidkashcodeacceleratedalgorithm is recommended he hashcode
acceleratedlgorithm can be optionallgxecutedas a doubleheck in this waythehash codes are calculatedthg former,

which savetime for thelatter doublecheck process

Table6. Averagetime consumption of the fouestedalgorithms.

Condition Model Group Element Number AverageTime Consumption (s)

M C Hc Qhc

ID is reliable M1 2007 0.49 0.50 0.97 0.57
M2 4869 1.9 2.0 3.8 2.2

M3 12896 7.6 7.7 15.2 8.1

ID is unreliable M1 2007 - 2.8 0.99 0.59
M2 4869 - 21.2 4.0 2.3

M3 12896 - 450.1 15.5 8.4

Note.M, C, and(Q)Hc are the Matchingirst, Comparisorfirst, and (QuickHashcodeaccelerate@lgorithms, respectively.

In addition to the above four algorithms, thésearctalso tests IFCdiff20]. As mentioned in sectioh 2.2 IFCdiff is
a softwareapplicationused to detect design changes in IFC filesiga contentbased comparisefirst method.Table7
shows the detection performancé$rCdiff andthat ofthe quickhashcodeacceleratedlgorithm. Note that the IFC files
detected in IFCdiff are exported by the corresponding Revit files in Reuvit.

To measurghe detection correctnesse adoptthe similarity rate (0 70 , whereb is the number of equal

