
Preprint

* Corresponding author, email: lin611@tsinghua.edu.cn, jiarui_lin@foxmail.com

Semantic Classification and Hash Code Accelerated Detection 1

of Design Changes in BIM Models 2

Jia-Rui Lin a,b,*, Yu-Cheng Zhoua,b 3

a Department of Civil Engineering, Tsinghua University, Beijing, China 100084 4
b Tsinghua University-Glodon Joint Research Centre for Building Information Model (RCBIM), Tsinghua University, 5

Beijing, China 100084 6

Abstract 7

As the design process of a building or infrastructure is complex with iterative steps and multidisciplinary collaboration, 8

design changes are inevitable and efficient change detection based on Building Information Modeling (BIM) is essential 9

for design collaboration and quality control. Although some detection methods have been proposed to tackle the problem, 10

majority of them regard syntactic data changes as design changes, which always yield incorrect and meaningless results. 11

For instance, exchanging the locations of two identical columns is meaningless from the viewpoint of a designer, which 12

the current methods take it as a design change. Otherwise, additional time is needed to avoid these issues, thus leading to 13

high time consumption. To address this problem, we first propose a semantic classification of design changes with three 14

categories of data changes and three levels of design changes. Then, an efficient detection method considering the proposed 15

semantic classification of design changes is proposed with hash-code-based acceleration. After implementing the proposed 16

and existing methods, the detection performance of our method is compared with the performances of existing methods 17

and invited designers based on 4 groups of BIM models. Results show that our method could: 1) detect semantic changes 18

with 100% correctness while reducing up to 98.1% of the detection time of existing methods, and 2) improve the average 19

detection rate of designers from 81.3% to 100% while saving 99.88% of the design reviewing time (detecting 7 changes 20

from 5800 instances). This research contributes to the body of knowledge a new definition of design changes and an 21

approach to efficient design change detection with hash-code-based acceleration. Meanwhile, the proposed classification 22

of design changes and developed BIM models in this research can also be taken as a baseline for developing and validating 23

new detection methods. 24

 25

Keywords: building information modeling (BIM); change detection; semantic classification; hash code acceleration; 26

design automation; collaboration; smart design 27

1 Introduction 28

The Architecture, Engineering, and Construction (AEC) design process is complex and involves many iterative steps 29

mailto:lin611@tsinghua.edu.cn
mailto:jiarui_lin@foxmail.com

and multidisciplinary design work that can be performed sequentially, concurrently or in parallel [1]. Changes in design 30

are inevitable, and come from multiple sources at any time, which lead to extensive impacts [2,3]. Over the past decade, 31

Building Information Modeling (BIM) has increasingly been adopted as a digital representation, as a knowledge resource 32

and as an integrated method for building lifecycle management [4-7]. However, it is challenging to detect design changes 33

as they are often documented in meeting memos, mail correspondences, on a post-it on the project managerôs table, or 34

solely in the memory of the project participants [8-10]. Furthermore, substantial information losses occur whenever an 35

employee leaves the project [11]. Consequently, the effects of design changes are so opaque that the consequences are hard 36

to judge, sometimes resulting in critical after-effects even in current BIM-based workflows [12]. On the other hand, this 37

situation means that design change detection plays an important role in design collaboration. For instance, designers must 38

share and exchange data among diverse software tools [13,14]; the ability to detect design changes can reduce the amount 39

of transferred information and improve the efficiency of partial model exchange [15]. Change detection also helps designers, 40

engineers, and managers focus on changes during the design process. However, manually detecting or checking for design 41

changes is time consuming and error prone. Therefore, automated design change detection is highly important. 42

Design change detection began when 2D-based drawings were used to represent a facility. In the CAD environment, a 43

common way to detect changes is using three primitive operators that capture the essence of available CAD drawing and 44

editing operators: insert, delete and replace [16]. In 3D object-based BIM models, additional information, such as 3D 45

shapes and properties, can be expressed in a model, and design change detection has been extensively studied by researchers. 46

However, semantic design change, which represents meaningful design change from a designerôs point of view in this 47

research, is not widely considered in many studies, thus leading to meaningless detection results and wasting a lot of time. 48

Currently, many detection methods usually match instances of two design versions by their IDs (e.g., GUID) and comparing 49

all properties of each matched pair in BIM models [17,18]. These methods failed to consider the semantics of instances in 50

BIM models, and they may detect meaningless change results because they regard data changes as design changes. For 51

example, exchanging the locations of two identical columns will be detected as a change by such methods, which actually 52

should not be considered as a change from a designerôs point of view. Similarly, deleting and recreating the same beam 53

should not be considered a change. In addition, these methods are sensitive to the IDs of instances. When the IDs change 54

unexpectedly, the detection result will be incorrect. Many studies have noted these issues and proposed improved detection 55

methods, such as the geometry-based [19] and content-based [20] automatic comparison approaches. However, these 56

methods are still not perfect because the detection results also contain meaningless changes, and they are usually time 57

consuming. 58

Obviously, the definition of semantic design changes is not clear, and is always mixed with data changes. To address 59

these issues, this research focuses on two aspects of design change: 1) classification, which provides a definition of 60

semantic design changes and is a criterion for design change detection, and 2) detection, which is a method as well as an 61

algorithm to identify semantic design changes according to the classification. First, we propose a semantic classification 62

of design changes that divides data changes into three categories and classifies design changes into three levels from a 63

designerôs viewpoint. Next, we improve the detection method by considering the proposed classification criterion to enable 64

the detection of semantic design changes. Finally, the hash-code-based encoding of instance properties is utilized to 65

accelerate the comparison process of design change detection. 66

The remainder of this paper is structured as follows. Section 2 reviews the related works, including those on the 67

classification and detection of design changes, and highlights potential research gaps. Section 3 describes the methodology 68

of this research. Section 4 proposes a semantic classification of design changes. Section 5 proposes a hash-code-accelerated 69

method that can detect semantic changes with high efficiency. Section 6 implements both the proposed and existing 70

methods, establishes BIM models, and tests the detection performances of both these methods and of designers. Section 7 71

discusses the applicability and novelty of this contribution and point out some complicated work that can expand the 72

application of the proposed method. Finally, Section 8 concludes this research and discusses future work. 73

2 Related Works 74

In the AEC design process, design changes occur rapidly during the design, engineering and construction phases [12]; 75

the changes cannot always be avoided or fully anticipated, and are also identiýed as one of the major causes of construction 76

project failure and a key source of project delays [21,22]. To respond to the market demands, project owners may request 77

a series of design changes to project designs at any phase of the project [23]. Currently, in the BIM-based workflows, 78

extensive studies of automatic design change detection have been done by many researchers. 79

In the BIM model data representation standard Industry Foundation Classes (IFC) and mostly used BIM platforms (e.g., 80

Autodesk Revit), each instance has an identifier that can be used to track its information changes such as GUID in IFC or 81

ElementId in Revit; this research calls these identifiers as ID. IFC defines an EXPRESS-based entity-relationship model 82

that consists of several hundred entities organized into an object-based inheritance hierarchy [24]. In Revit, the data in a 83

document consists primarily of a collection of elements [25] in which each element has many properties. Generally, the 84

BIM model structure can be described by instances (objects) that possess many properties. The mostly used method of 85

design change detection is matching instances of two design versions by their IDs and comparing all properties of each 86

matched pair in BIM models. This method has been adopted by many studies [17,18] and by most commercial BIM 87

platforms, such as Autodesk Revit, Navisworks, and Graphisoft ArchiCAD [20]. However, as mentioned above, this 88

method may detect meaningless change results and is sensitive to the ID. To address the issue of this method, many studies 89

have proposed improved detection methods. Lee, G. et al. [26] proposed a flattening-based method that utilizes a recursive 90

strategy to þatten the instances and then it compares the þattened instances. Daum, S. and Borrmann, A. [19] proposed an 91

approach for detecting equivalences in IFC datasets based on a geometrical comparison first and a value comparison second. 92

Shi, X. et al. [20] proposed a content-based automatic comparison approach for IFC ýles that constructs a hierarchical 93

structure for both files and then uses an iterative bottom-up procedure to compare them. Shafiqa, M. T. and Lockleyb, S. 94

R. [27] proposed a signature-based model comparison approach for IFC models that uses instance characteristics to define 95

the corresponding signatures, which can be used to establish candidates for comparison. However, these methods are 96

suffering from the fact that their detection results also contain meaningless changes, and they are usually time consuming. 97

Next, this section will first describe the current classification of design changes, and then discuss two types of design 98

change detection methods, and finally summary the defects of current detection methods. 99

2.1 Classification of Design Changes 100

Design changes usually involve two files (documents); this research calls them File A (the old file) and File B (the new 101

file). Currently, design changes are classified into three types by most studies: added (newly created), modified (revised), 102

and deleted (removed) changes [1,19,23,26,28,29]. This research summarizes their definitions as follows. 103

¶ Added. An instance exists only in File B. 104

¶ Deleted. An instance exists only in File A. 105

¶ Modified. An instance exists in Files A and B, but they are not equal (some properties changed). 106

2.2 Detection of Design Changes 107

According to the current classification of design changes, this research groups detection methods into two categories 108

based on the order in which they execute the following two processes. 109

¶ Matching. Determine whether an instance in File A also exists in File B or vice versa. This process usually uses 110

the ID of an instance to find its ñidenticalò instance in another file. That is, matched instances exist in both Files A and B, 111

while unmatched instances exist in only one file. 112

¶ Comparison. Determine whether two instances are equal or whether there are two equal instances exist in both 113

Files A and B. This process usually compares all the properties of instances (except ID). 114

Therefore, the two categories of detection methods are as follows: 115

¶ Matching-first method. The matching process is executed first and then comparison is performed. 116

¶ Comparison-first method. The comparison process is executed first and then matching (optional) is performed. 117

Most of the time, ID (e.g., GUID in IFC or ElementId in Revit) is the only property used for matching, so we define 118

matching as matching two instances by ID in this research. Some studies may call the comparison of two instance properties 119

other than ID ñmatchingò but that process is called comparison in this research. 120

2.2.1 Matching-first Method 121

Figure 1 shows the flowchart of the matching-first method for design change detection. In this figure, files that ñinst1ò 122

and ñinst2ò are from can be switched so that the output ñDeletedò can be changed to ñAddedò, that is, if all the File A (B) 123

are changed to File B (A) in the flowchart, the output ñDeletedò should be ñAddedò. This rule also applies to flowcharts 124

below. 125

 126

Figure 1. Flowchart of the matching-first method for design change detection. 127

The matching-first method is the most commonly used method for detecting design changes between two BIM models; 128

its comparison process usually compares all the properties (except ID) of each instance. For convenience in the subsequent 129

analysis, this research defines two types of detection errors as follows. 130

¶ Major error. A changed (added/deleted/modified) instance is detected as unchanged, or an unchanged instance is 131

detected as changed. 132

¶ Minor error. A changed instance is detected as a different change type (e.g., a modified instance is detected as 133

added). 134

An instance inst1 in File A

inst1.ID = inst2.ID ?

An new instance inst2

in File B

No

All instances in File B

have been compared?

No

Yes

Deleted

Yes

All properties of inst1

and inst2 are equal?

Yes

Unchanged

No

Modified

Matching

Comparison

The advantages of the matching-first method are simple and fast, but it is sensitive to ID and may yield meaningless 135

results. Regarding the sensitivity to ID, an unexpected change of ID (which is called unreliable) can occur when copying 136

models, saving as, work sharing and syncing in Revit [30]; once this happens, the matching-first method will no longer 137

match any instances in Files A and B. Thus, even two instances whose properties (except ID) are all equal will be detected 138

as deleted and added. Consequently, when the ID is unreliable, the matching-first method will result in many major errors. 139

Meaningless results may result from the matching-first method regardless of whether the ID is reliable. Consider an 140

exchange of locations for two identical columns as an example. If all properties (except ID) of these two columns are equal, 141

then this exchange should not be considered a change because it is meaningless from a design viewpoint. However, the 142

matching-first method will detect it as a change of the locations of the two columns. Thus, the matching-first method may 143

result in major errors regardless of whether the ID is reliable. 144

2.2.2 Comparison-first Method 145

Figure 2 shows the flowchart of the comparison-first method for design change detection. 146

 147

Figure 2. Flowchart of the comparison-first method for design change detection. 148

To improve the detection correctness of the matching-first method, many studies have proposed new methods, most of 149

which are comparison-first methods. In fact, the flattening-based method [26], geometry-based method [19], content-based 150

method [20], and signature-based method [27] mentioned above are all comparison-first method without matching 151

processes. The former two methods consider some semantics in the comparison process; thus, they avoid comparing IDs 152

An instance inst1 in File A

All properties of inst1

and inst2 are equal?

An new instance inst2

in File B

No

All instances in File B

have been compared?

No

YesUnchanged

Yes

inst1.ID = inst2.ID ?

Yes

Modified

No

Deleted

Comparison process

Matching process

in IFC files. The latter two methods include some measures to accelerate the comparison process; specifically, the third 153

method constructs two hierarchical structures for two IFC files and uses an iterative bottom-up procedure to compare them, 154

while the fourth method uses a hash function to calculate signatures for each instance and then uses the signatures to 155

establish candidates for comparison. Note that signatures (or fingerprints) have been widely used in instance detection and 156

classification[31], and it is a simplified representation that often carries the most important information of an instance. 157

The comparison-first method first uses a comparison process to classify instances as changed or unchanged, which can 158

avoid major errors. Therefore, the example of exchanging the locations of two identical columns will not be detected as a 159

change by this method. However, most current comparison-first methods have no matching process, which may result in 160

minor errors. For example, if the geometry of an instance has been modified and its ID is not changed, the current geometry-161

based (comparison-first) method may detect this as deleted and added changes, but actually, it should be a modified change. 162

In fact, when the ID is reliable, ID can be used to identify a changed instance in File B was new or modified from File A, 163

which is the only way to eliminate minor errors. Thus, if the matching process is executed after the comparison process, 164

minor errors can be eliminated immediately when the ID is reliable. 165

A significant defect of the comparison-first method is that it is time consuming. The comparison process usually 166

consumes much more time than matching because instances in BIM models possess many properties, such as parameters, 167

location, geometry, etc., making the comparison-first method much slower. This is an important reason why this method 168

is not commonly used. 169

2.3 Summary 170

To illustrate the difference of detection results between the matching-first and comparison-first methods clearly, Figure 171

3 shows a typical design change in a BIM model and the detection results of these two methods. In this figure, the ID and 172

other properties have blue and yellow backgrounds, respectively; C, G, and L are the category, geometry, and location, 173

respectively. In Figure 3, the detection result of the comparison-first method is correct, but the result of the matching-first 174

method has some errors. 175

 176

Figure 3. Detection results of the matching-first and comparison-first methods for a typical change. 177

To sum up the detection performances of these two types of methods, Table 1 shows the detection correctness and time 178

consumption of them. It can be seen from Table 1 that the comparison-first method is the only one can achieve high 179

correctness in all cases, but it has the lowest efficiency. Actually, minor errors are unavoidable when the ID is unreliable; 180

consequently, in this research, these unavoidable minor errors will be ignored when considering the correctness of a 181

detection method, so the comparison-first method is considered correct. However, because the current comparison-first 182

method is based on the classification criterion (added/deleted/modified) which considers only syntactic changes, it can only 183

obtain syntactic correctness but cannot deal with semantics. Therefore, this method will still detect meaningless design 184

change results when used in practice. For example, in IFC, the geometric expression of an instance can be changed from a 185

solid model to a surface model while maintaining the meaning, and the local coordinate system and the placement of an 186

instance can be changed simultaneously while keeping its global location fixed, however, these two example changes 187

cannot be identified semantically by the current comparison-first method. Additionally, the change of an instance property 188

which is meaningless for designers should not be regarded as a semantic design change, and it cannot be handled correctly 189

by the current comparison-first method. 190

In summary, the definition of semantic design changes is not clear, and is always mixed with data changes. The 191

matching-first method regards data changes as design changes, and it results in wrong and meaningless results. The 192

comparison-first methods proposed in other researches addresses the issue of ID-sensitivity and considers some semantics 193

of instances, but they still cannot categorize design changes and data changes correctly; thus, meaningless design changes 194

still exist in its detection results. Additionally, the time consumption of the comparison-first method is high. 195

#1 C1 G1 L1

#2 C1 G1 L2

#3 C3 G3 L3

#4 C4 G4 L4

#1 C1 G1 L2

#2 C1 G1 L1

#3 C3 G6 L3

#5 C4 G4 L4

Exchange Location

Modify Geometry

Delete & recreate same

Modified

Modified

Modified

AddedDeleted

#1C1 G1 L2

#2C1 G1 L1

#3C3 G6 L3

#5C4 G4 L4

#1C1 G1 L1

#2C1 G1 L2

#3C3 G3 L3

#4C4 G4 L4

Unchanged

Unchanged

Modified

Unchanged

#1 C1 G1 L1

#2 C1 G1 L2

#3 C3 G3 L3

#4 C4 G4 L4

#1 C1 G1 L2

#2 C1 G1 L1

#3 C3 G6 L3

#5 C4 G4 L4

a) Exemplary design change (ID is reliable)

b) Detection result of matching-first method c) Detection result of comparison-first method

Table 1. Detection performances of the matching-first and comparison-first methods. 196

 M C (no m) C

ID is reliable Major error X O O

Minor error O X O

ID is unreliable Major error X O O

Minor error X X X

Time consumption Low High High

Note. M is the Matching-first method; C (no m) is the Comparison-first method (without the matching process); 197

O means the method can eliminate this type of error, and X means cannot eliminate. 198

3 Research Methodology 199

The objective of this research is to detect semantic design changes with high correctness and efficiency, and a five-step 200

methodology is utilized (Figure 4). The methodology consists of five parts: review, semantic change classification, 201

detection method, implementation, and validation. Each part is introduced as follows. 202

In the review of related works, we concluded that the unclear definition of design changes is the reason for meaningless 203

detection results. Therefore, although the current comparison-first methods address some issues in the matching-first 204

method, they may still detect meaningless results, because the classification criterion for design changes they adopt does 205

not consider the semantics in BIM models. Additionally, the time consumption of the current comparison-first methods is 206

high. 207

To address these issues and achieve our objectives, we focus on two aspects: 1) classification, which provides the 208

definition of semantic design changes and also works as a criterion and guide for design change detection, and 2) detection, 209

which is a method used to identify changes according to the classification. First, we propose a semantic classification of 210

design changes that divides data changes into three categories and classifies design changes into three levels from a design 211

viewpoint. Next, we improve the comparison-first method by considering the proposed classification criterion, thus 212

enabling the detection of semantic design changes. Finally, to further improve the efficiency, we adopt hash codes of 213

instances to accelerate the comparison process of the detection method, and the time complexities of our method and 214

previously proposed methods are also analyzed. 215

To verify the performance of the proposed method, this research implements our method and previously proposed 216

methods in Revit. At the beginning, all the implemented methods are tested with manually created design changes in 217

multiple BIM models (which include almost all types of changes and have different complexity levels), and their efficiency 218

and correctness are compared. Meanwhile, detection performances of the proposed method and invited designers are also 219

measured and compared to further show its benefit. First, a group of junior designers was invited to make design changes 220

in a BIM model individually, the modified models and documents recording design changes are saved in two different 221

repositories. Then, each designer randomly chooses one model (except for the one he/she created) from the model 222

repository and try his/her best to find the design changes manually. Finally, our method is utilized to detect design changes 223

automatically, and the performance of our method and the designers is compared. 224

 225

Figure 4. Overview of the research methodology. 226

4 Semantic Classification of Design Changes 227

As mentioned above, design changes and data changes are mixed used currently and what kind of changes are valuable 228

or semantic for designers is not clear. Therefore, this research will first propose a semantic classification of design changes 229

[32] to illustrate and define the semantic design changes. First, the data changes are divided into three categories; then, the 230

design changes are classified into three levels from a design viewpoint to identify the semantic design changes in BIM 231

models. 232

4.1 Categories of Data Changes 233

As two different model schemas, both IFC and Revit data models are based on the object-oriented modeling method, 234

representing the same design data of a building or facility in different ways. In either of these two models, data of building 235

elements can be described by instances (objects) that possess many properties. Generally, for each instance of a BIM model, 236

its data information can be divided into three categories: 1) the characteristics and specifications of an instance such as the 237

name, material, size, etc., which is called property data in this research; 2) the information shows the location, shape, 238

geometry, etc. of an instance, which is called appearance data; 3) the information to connect other instances, such as the 239

level of an instance, the relationship of a wall and a door, etc., which is called relationship data. Accordingly, we can 240

classify the data changes in each category. A summary of the data changes in each category is shown in Table 2. 241

Property data represents instance properties, such as parameters or other user-specified attributes. In IFC, an IfcProperty 242

can be added to or deleted from an IfcPropertySet; the value of an IfcProperty can be modified; the name of a user-defined 243

IfcProperty can be modified; and the order of IfcProperty in an IfcPropertySet can be changed. 244

Appearance data represents the 3D appearances of instances, such as their geometry and location. In IFC, the attribute 245

ValidationSemantic change

classification

Review

Classification of design

changes

Detection methods of

design changes

Detection Method Implementation

Existing methods

Our methods

Guide
Change categories

Change levels

Considering

semantics

Hash code

acceleration
Enhancement

Detection performance

(correctness & efficiency)

Criterion

Representations in IfcProductRepresentation is a list of IfcRepresentation (including shape representation), where each 246

member defines a valid representation of a particular type within a particular representation context. Therefore, instance 247

geometry can be added, deleted, and modified via IfcRepresentation. The representation method of an IfcRepresentation 248

can be changed by changing the subtype of an IfcRepresentationItem in Items of the IfcRepresentation, e.g., from 249

IfcFaceBasedSurfaceModel to IfcSolidModel. Additionally, the transformation property of an IfcProduct can be modified 250

by its ObjectPlacement. 251

Relationship data represents the relationships between two or more instances, such as the relationship between a door 252

and a wall. In IFC, instance relationships are represented by IfcRelationship, which connects instances through 253

RelatingObject and/or RelatedObjects attributes. Classes such as IfcBuildingElement have many attributes defined by a set 254

of IfcRelationship (or its subtype), e.g., IsDecomposedBy, HasAssociations, and IsDefinedBy. Relationships can be added, 255

deleted, and modified in these attributes, and there are two types of modifications: modifying the related instance or the 256

relationship itself. 257

Table 2. Data changes in each category 258

Category Data Change Description Example in IFC

Property
data

Added Add a new instance property Add an IfcProperty in HasProperties of an IfcPropertySet

Deleted Delete an existing instance property Delete an IfcProperty in HasProperties of an

IfcPropertySet

Value Modified Modify a propertyôs value Modify the NominalValue of an IfcPropertySingleValue

Name Modified Modify a propertyôs name Modify the Name of an IfcProperty

Order Changed Change the order of instance properties Change the order of IfcProperty in HasProperties of an

IfcPropertySet

Appearance
data

Added Add a new instance geometry Add an IfcRepresentation in Representations of an
IfcProductRepresentation (e.g., Representation of IfcWall)

Deleted Delete an existing instance geometry Delete an IfcRepresentation in Representations of an

IfcProductRepresentation

Geometry

Modified

Modify the geometric shape of an instance Change the IfcRepresentation in Representations of an

IfcProductRepresentation

Transformation

Modified

Modify the transformation property of an

instance, such as translation or rotation

Change the IfcObjectPlacement in ObjectPlacement of an

IfcProduct

Representation

Modified

Change the geometric representation, such as

converting a solid model to a surface model

Change the subtype of an IfcRepresentationItem in Items

of an IfcRepresentation

Relationship
data

Added Add a new relationship between two instances Add an IfcObject in RelatedObjects of an
IfcRelDecomposes

Deleted Delete an existing relationship between two

instances

Delete an IfcObject in RelatedObjects of an

IfcRelDecomposes

Instance

Modified

Modify a related instance Modify the data of an IfcObject in RelatedObjects of an

IfcRelDecomposes

Relationship

Modified

Modify a relationship between two instances (e.g.,

change the relationship between A& B to A& C)

Change an IfcObject in RelatedObjects of an

IfcRelDecomposes

4.2 Levels of Design Changes 259

As mentioned above, data changes are insufficient to be regarded as design changes. Therefore, we propose a three-260

level semantic classification of design changes (example changes of each level based on IFC and Revit are shown in Figure 261

5 and Figure 6 respectively). 262

First, all data changes should be semantically identified at the instance level as discussed in Section 4.1. 263

Next, from the perspective of the type level, changes in instances may be caused by changes in a type. For example, 264

the geometric changes of multiple instances may be caused by a geometry change of the type from which these instances 265

inherit. To optimize the detection result, if changes in some instances are caused by changes in a type, the source of the 266

change should be identified, and the changed instances should be grouped by the type. 267

Finally, from the perspective of the model level, changes in instances may be meaningless. For example, exchanging 268

the locations of two identical columns should not be detected as a change because the model is the same before and after 269

the change from a designerôs viewpoint. Such meaningless changes should not be flagged as changes. In addition, similar 270

to the type level, instance modifications in relationship data should be detected at the model level to identify the source of 271

the change. For example, modifying the elevation of a level may result in many changes in the related instances; therefore, 272

the source of the change (i.e., the modified elevation) should be identified, and the related instances should be grouped by 273

that change. 274

In summary, this research defines the semantic design change as follows: a change is regarded as a semantic design 275

change if and only if the change is semantic at all levels, namely, instance level, type level, and model level. It can be seen, 276

data changes can only involve semantic changes at the instance level, such changes do not involve semantics at the higher 277

two levels. Therefore, we can conclude that the semantic classification criterion for the detection method involves 278

identifying semantic changes at three levels: the instance level (where changes are data changes), the type level, and the 279

model level. 280

 281

Figure 5. Example changes at three levels in IFC 282

 283

Figure 6. Example changes at three levels in Revit 284

5 Detection of Semantic Design Changes 285

5.1 Improved Method by Considering Semantics of Design Changes 286

Detecting semantic design changes can be achieved by detecting design changes under the semantic classification 287

criterion, which can be obtained via the comparison-first method considering the following requirements as described 288

c) Meaningless changes at model level

#31: If cLocal Placement

#21: IfcAxis2Placement 3D

#11: IfcCartesianPoint

Coordinates =(0.,0.,0.)

#32: If cLocal Placement

#22: IfcAxis2Placement 3D

#12: IfcCartesianPoint

Coordinates =(0.,0.,0.)

#61: I fc Rel Associates Material

a) Changes at instance level b) Changes at type level

#31: If cLocal Placement

#101: IfcColumn

ID=0001
Name='Round Column'

#21: IfcAxis2Placement 3D

#11: IfcCartesianPoint

Coordinates =(0.,0.,0.)

#31: If cLocal Placement

#22: IfcAxis2Placement 3D

#12: IfcCartesianPoint

Coordinates =(1.,1.,0.)

#101: IfcColumn

ID=0001
Name=
'Round Column'

#51: I fc Material

Name='Concrete'

#101: IfcColumn

ID=0001
Name='Round Column'

#101: IfcColumn

ID=0001
Name='Round Column'

#102: IfcColumn

ID=0002
Name='Round Column'

#31: If cLocal Placement

#21: IfcAxis2Placement 3D

#11: IfcCartesianPoint

Coordinates =(0.,0.,0.)

#32: If cLocal Placement

#22: IfcAxis2Placement 3D

#12: IfcCartesianPoint

Coordinates =(0.,0.,0.)

#101: IfcColumn

ID=0001
Name='Round Column'

#102: IfcColumn

ID=0002
Name='Round Column'

#102: IfcColumn

ID=0002
Name=
'Round Column'

#61: I fc Rel Associates Material

#101: IfcColumn

ID=0001
Name=
'Round Column'

#52: I fc Material

Name='Steel'

#102: IfcColumn

ID=0002
Name=
'Round Column'

a) Changes at instance level

Location: (x1, y1) Ÿ (x2, y2)

Top level: L3 Ÿ L4

Length: 2000mm Ÿ 3000 mm

Family section: 300450 mm Ÿ 300 300 mm

Family material: ConcreteŸ Steel

b) Changes at type level c) Meaningless changes at model level

Exchange location

Delete and recreate

below. 289

1. Meaningful properties 290

When comparing property data, only the meaningful properties should be compared; meaningless properties should be 291

ignored. Some properties of an instance are meaningless for designers, such as the IfcOwnerHistoryInfo. Therefore, a 292

change in these properties should not be regarded as an instance semantic change, and such properties should be ignored 293

during comparison of two instances. In addition, properties that can be derived (or inferred) from other properties should 294

be ignored during the comparison. In this research, the above two kinds of properties are called meaningless properties; 295

the remaining properties of an instance are called meaningful properties. Thus, when comparing two instances, only the 296

meaningful properties should be compared. 297

2. Order of properties 298

When comparing property data, this research assumes that the order change in property data should not be regarded as 299

a semantic change. Some properties are collections of many other properties, such as the IfcPropertySet in IFC and the 300

Parameters in Revit. Therefore, a detection method should compare these property sets regardless of their orders because 301

the order is meaningless. 302

3. Semantics of geometry 303

When comparing appearance data, the geometry of instances should be compared semantically. In BIM models, the 304

geometry of an instance can be represented in different ways [33,34]. For example, the geometry of an instance can be 305

represented as sweeping, constructive solid geometry (CSG), or B-Rep in IFC. Therefore, geometries with different 306

syntactic data should be compared by their semantic meanings. 307

4. Reference ID 308

When comparing relationship data, the related instances should be compared rather than the reference IDs. Some 309

properties are references to other instances, such as the STEP ID (e.g., ñ#124ò) in IFC [35] and the LevelId in Revit. The 310

instances associated with these properties are semantic, but their reference IDs are not. Thus, when comparing these 311

properties between two instances, the instances referred to by the properties should be compared instead of the properties 312

themselves. 313

5. Changes in types 314

Changes in instances may be caused by changes in a type; these changes occur at the type level. In IFC, one approach 315

for detecting changes at the type level is using the RelatingObject and/or RelatedObjects attributes of IfcRelationship. If 316

changes occur to an instance that is related to many other instances, the changes in the related instances caused by this 317

changed instance should be grouped by this instance. However, detecting changes at the type level is difficult in Revit 318

because types (family types) are not stored as instances (elements). An alternative to detecting changes at the type level is 319

to list all the categories of changed instances in a hierarchical view allowing users to view any single categoryôs changed 320

instances. 321

After considering all the requirements above, the comparison-first method can detect design changes under the semantic 322

classification criterion. The flowchart of this improved comparison-first method for semantic design change detection is 323

shown in Figure 7, and the InstanceEqual function used in Figure 7a is shown in Figure 7b. In Figure 7b, the InstanceEqual 324

function takes only the meaningful properties of two instances and then compares the equality of these properties 325

semantically, which includes ignoring the order of properties, comparing geometries in a unified data format, and 326

comparing the referred instances instead of the reference properties. Note that change in types is not considered in Figure 327

7b because it has an alternative to detect. 328

So far, only one significant disadvantage remains for the comparison-first method: its high time consumption. This 329

issue will be addressed in the following section. 330

 331

Figure 7. Flowchart of the improved comparison-first method for semantic design change detection. 332

5.2 Acceleration Based on Hash Code 333

A hash function is any function that can be used to map data of arbitrary size onto data of a fixed size [36]. The values 334

returned by a hash function are called hash codes. An important feature of hash functions is that the same data will be 335

An instance inst1 in File A

InstanceEqual(inst1, inst2) ?

An new instance inst2

in File B

No

All instances in File B

have been compared?

No

YesUnchanged

Yes

inst1.ID = inst2.ID ?

Yes

Modified

No

Deleted

Comparison

Matching

a) Comparison-first method (improved) b) Algorithm of comparing semantic equality of instances used in a)

Algorithm 1 Compare the semantic equality of two instances

Input: two instances inst1, inst2

Output: whether inst1 is equal to inst2

1: function InstanceEqual(inst1, inst2)

2: props1, props2 Ŷ all meaningful properties of inst1, inst2in the same order

3: if props1.length Í props2.length

4: return false

5: end if

6: for i = 1 to props1.length

7: if not PropertyEqual(props1[i], props2[i])

8: return false

9: end if

10: end for

11: return true

12: end function

13:

14: function PropertyEqual(prop1, prop2)

15: if typeof(prop1) Í typeof(prop2)

16: return false

17: end if

18: if prop1is a geometry property

19: geom1, geom2 Ŷ geometries of prop1, prop2 in a unified data format

20: return geom1 == geom2

21: else if prop1 is a reference property

22: rinst1, rinst2 Ŷ referred instances of prop1, prop2

23: return InstanceEqual(rinst1, rinst2)

24: else

25: return prop1 == prop2

26: end if

27: end function

assigned the same hash code; nevertheless, having the same hash code does not mean that the original data are the same 336

(but they likely are). Diff erent data with the same hash code forms a hash collision. A good hash function will have a very 337

low probability of hash collisions. 338

The time consumption of the comparison process during detection is directly proportional to the number of times of 339

data (e.g., properties) reading. However, if we calculate hash codes for all instances and use those to filter out unequal 340

instances in the comparison process, the time consumption can be greatly reduced; subsequently, the meaningful properties 341

of two instances need to be read and compared only when their hash codes are equal. Moreover, if the probability of hash 342

collisions is zero or very low, we can directly assert that two instances are equal if their hash codes are equal, which further 343

reduces the time consumption. 344

To detect semantic design changes, the key point is that the hash code of an instance should correspond to the semantic 345

classification criterion. Therefore, the hash code of an instance should change if and only if that instance is changed 346

semantically, which also implies that the result of comparing two instancesô hash codes (ignoring hash collision) should 347

be identical to that produced using the comparison process proposed in Section 5.1. Generally, instance hash code 348

calculation involves calculating the hash codes for all the meaningful properties of the instance and then combining them. 349

Therefore, only hash codes of the meaningful properties of an instance should be calculated; the property set order should 350

be ignored; geometries with the same semantics should have the same hash code; and the reference to another instance 351

should be replaced by the hash code of the referenced instance. Meanwhile, hash codes of different properties of a single 352

instance can be combined into one instance hash code using a parity-preserving operator such as XOR [37]. In this way, 353

the order change of properties is omitted automatically, thus creating a one-shot solution for comparing two instances. The 354

algorithm of calculating the hash code of an instance considering semantics proposed in this research is shown in Figure 8. 355

Figure 9 shows the flowcharts of the hash-code-accelerated (improved comparison-first) methods proposed in this 356

research for semantic design change detection. In this figure, hash codes of all instances in both File A and B have been 357

calculated previously by the algorithm in Figure 8. In Figure 9a, the InstanceEqual function is also the Algorithm 1 shown 358

in Figure 7b, and the ñNoò with red color means the occurrence of the hash collision. In Figure 9b, the quick hash-code-359

accelerated method does not include the comparison process because it assumes that the probability of hash collisions is 360

zero. 361

 362

Figure 8. Algorithm of calculating the hash code of an instance considering semantics. 363

 364

Figure 9. Flowcharts of the hash-code-accelerated (improved comparison-first) methods for semantic design change 365

detection. 366

Algorithm 2 Calculate the hash code of an instance considering semantics

Input: an instance inst1

Output: the hash code of inst1

1: function GetInstanceHashCode(inst1)

2: hashcodeŶ 0

3: props1 Ŷ all meaningful properties of inst1

4: for i = 1 to props1.length

5: hashcodeŶ hashcodeXOR GetPropertyHashCode(props1[i])

6: end for

7: return hashcode

8: end function

9:

10: function GetPropertyHashCode(prop1)

11: if prop1is a geometry property

12: hashcode Ŷ hash code of geometry of prop1 in a unified data format

13: else if prop1 is a reference property

14: hashcode Ŷ hash code of the referred instances of prop1

15: else

16: hashcode Ŷ hash code of prop1

17: end if

18: return hashcode

19: end function

a) Hash-code-accelerated method b) Quick hash-code-accelerated method

An instance inst1 in File A

Hash codes of inst1 and

inst2 are equal?

An new instance inst2

in File B

No

All instances in File B

have been compared?

No

YesUnchanged

Yes

inst1.ID = inst2.ID ?

Yes

Modified

No

Deleted

Comparison

Matching

An instance inst1 in File A

Hash codes of inst1 and

inst2 are equal?

An new instance inst2

in File B

All instances in File B

have been compared?

No

YesUnchanged

Yes

inst1.ID = inst2.ID ?

Yes

Modified

No

Deleted

Comparison

Matching

InstanceEqual(inst1, inst2) ?

Yes

No

No

5.3 Time Complexity Analysis 367

For convenience, this research assumes that the total number of instances in both Files A and B is ὔ and that the time 368

consumption of comparing two instancesô equality is 1 s, while comparing the IDs or hash codes of two instances requires 369

ρȾά s. 370

The matching-first method executes the matching process ὕὔ times and the comparison process ὕὔ times; thus, 371

its total time cost is ὕ ὔ ὕ ὔ ρ . In our test, ά is approximately 56000, which is much larger than ὔ; 372

therefore, it can be assumed that ρ. Thus, the time complexity of the matching-first method is ὕὔ . However, it 373

should be noted that this method is infeasible when the ID is unreliable because its detection result contains both major 374

and minor errors. Therefore, its time complexity is only applicable when the ID is reliable. 375

The comparison-first method executes the matching process ὕὔ times and the comparison process ὕὔ times, but 376

the latter can be reduced to ὕὔ in one case. When the ID is reliable and the change is small, as shown in Figure 7, almost 377

every first comparison of two instances will return ñYesò because the order of instance comparisons is usually based on 378

the ID. Therefore, the execution times of the comparison process will be reduced to ὕὔ in this case, and the total time 379

consumption of the comparison-first method will be ὕ ὔ ὕὔ . However, when the ID is unreliable or the change 380

is large, the execution times of the comparison process are ὕὔ and cannot be reduced. In this case, the total time 381

consumption of the comparison-first method will be ὕ ὔ ὕὔ . 382

For the hash-code-accelerated method, the equality of two instances will be compared if and only if their hash codes 383

are equal. Considering the probability of hash collisions is very low, almost all unequal instances are filtered out before the 384

equality comparison occurs. Therefore, its execution times of the comparison are always ὕὔ . Because the time 385

consumption of calculating the hash codes is also ὕὔ , the total time consumption of the hash-code-accelerated method 386

is ὕ ὔ ὔ ὕὔ . As for the quick hash-code-accelerated method, it does not compare the equality of two 387

instances, so its total time consumption is ὕ ὔ ὕὔ . 388

Table 3 summarizes the time complexities of the four methods in two conditions and shows that the two hash-code-389

accelerated methods perform best overall. Actually, the quick hash-code-accelerated method is faster than the hash-code-390

accelerated method because the former does not double-check the equality of two instances. In addition, when the ID is 391

reliable, the time consumption of the quick hash-code-accelerated method and the comparison-first method may be close 392

because both will read the meaningful properties of all instances at onceðthe hash-code-accelerated method may even be 393

slowest in this case. 394

A user-friendly method exists to eliminate any possible hash collisions in the quick hash-code-accelerated method, that 395

is, executing the hash-code-accelerated method to check the detection result in the background or another thread after the 396

quick hash-code-accelerated method is complete. Since the hash codes have been calculated by the quick hash-code-397

accelerated method, the double-checking process can save that calculation time. Finally, the total time consumption of this 398

method is close to that of the hash-code-accelerated method, but the user can obtain the detection result as soon as the 399

quick hash-code-accelerated method is complete. 400

Table 3. Time complexities of the four methods in two conditions. 401

Condition Time Complexity

M C Hc Qhc

ID is reliable and change is small ὕὔ ὕὔ ὕὔ ὕὔ

ID is unreliable or change is large N/A ὕὔ ὕὔ ὕὔ

Note. M, C, and (Q)Hc are the Matching-first, Comparison-first, and (Quick) Hash-code-accelerated methods, respectively. 402

6 Implementation and Results 403

Both the proposed method in this research and existing methods are implemented in Revit for testing purpose, and then 404

4 groups of BIM models are developed as a baseline dataset for validating the detection methods. Finally, performances of 405

the proposed method and existing methods as well as invited designers are compared to highlight the advantages of our 406

method. 407

6.1 Implementation of the Detection Methods 408

According to the four detection methods: matching-first, comparison-first, hash-code-accelerated, and quick hash-code-409

accelerated methods, this research develops four algorithms under the semantic classification criterion based on Revit API 410

using the C# language. In this implementation, the four algorithms share the same function of instance comparison which 411

considers the semantics of design changes. Thus, both the matching-first and comparison-first algorithms represent existing 412

methods with an improved comparison process. 413

Figure 10 shows the core code listings for these four algorithms and the key differences between the last three are 414

indicated by the red rectangles. The target of these algorithms is to classify all the element IDs into four lists: addEIds , 415

delEIds , modifyEIds , and unchangedEIds ; these four lists represent added, deleted, modified, and unchanged elements, 416

respectively. In Figure 10 c) and 10d), the two hash-code-accelerated algorithms compare the hash codes of two elements 417

by using EIdHashCodes1/2 , which stores the precalculated hash codes for all the elements in one file, and eIdHc1/2.Value 418

represents the hash code of an element in File A/B. 419

 420

Figure 10. Core code listings for the four algorithms 421

The eleEqual() function in Figure 10 is used to judge whether all the meaningful properties of two instances are 422

semantically equal. It selects 5 of the 22 element properties in Revit as the meaningful properties, as shown in Table 4. 423

Note that, generally, the geometry and location of an instance need to be considered together. However, in Revit, the 424

location can also store element geometric information such as LocationCurve, and considering location while ignoring the 425

geometry of an element is sufficient to obtain accurate detection results. Therefore, Table 4 regards element geometry as a 426

meaningless property for the convenience of implementation. 427

Finally, all these algorithms are integrated into a WPF application for Revit change detection. This application is used 428

to test these algorithms in the next section. The alternative approach for detecting changes at the type level (as described 429

in Section 5.1) is adopted in this application. Therefore, all the categories of changed instances will be listed in a tree view, 430

allowing users to view any single categoryôs changed elements. 431

Table 4. Meaningful and meaningless properties of an element in Revit 432

 Meaningful properties Meaningless properties

//List<Element> Eles1/2: all elements in File A/B, ordered by Id.
int i = 0, j = 0, eId1i, eId2j;
while (i < Eles1.Count && j < Eles2.Count)
{

eId1i=Eles1[i].Id.IntegerValue;eId2j=Eles2[j]. Id.IntegerValue ;
if (eId1i < eId2j)
{ delEIds.Add (eId1i); i++; }
else if (eId1i == eId2j)
{

if (eleEqual (Eles1[i], Eles2[j])) unchangedEIds.Add (eId2j);
else modifyEIds.Add (eId2j);
i++; j++ ;

}
else //if(eId1 > eId2)
{ addEIds.Add (eId2j); j++ ; }

}
while (i < Eles1.Count)
{ delEIds.Add (Eles1[i]. Id.IntegerValue); i++; }
while (j < Eles2.Count)
{ addEIds.Add (Eles2[j]. Id.IntegerValue); j++ ; }

//use eIdEles _ in foreach loop to use Remove()
var eIdEles1_ = new Dictionary< int , Element>(EIdEles1);
var eIdEles2_ = new Dictionary< int , Element>(EIdEles2);

foreach (var ee1 in EIdEles1)
foreach (var ee2 in eIdEles2_)

if (eleEqual (ee1.Value, ee2.Value))
{

unchangedEIds.Add (ee2.Key);
eIdEles1_.Remove(ee1.Key); eIdEles2_.Remove(ee2.Key);
break ;

}
foreach (var ee1 in eIdEles1_)
{

if (eIdEles2_.ContainsKey(ee1.Key))
{ modifyEIds.Add (ee1.Key); eIdEles2_.Remove(ee1.Key); }
else

delEIds.Add (ee1.Key);
}
foreach (var ee2 in eIdEles2_)

addEIds.Add (ee2.Key);

//EleHashCodes1/2 have been initialized and calculated previously
var eIdHCs1_ = new Dictionary< int , long >(EIdHashCodes1);
var eIdHCs2_ = new Dictionary< int , long >(EIdHashCodes2);

foreach (var eIdHc1 in EIdHashCodes1)
foreach (var eIdHc2 in eIdHCs2_)

if (eIdHc1.Value == eIdHc2.Value &&
eleEqual (EIdEles1[eIdHc1.Key], EIdEles2[eIdHc2.Key]))

{
unchangedEIds.Add (eIdHc2.Key);
eIdHCs1_.Remove(eIdHc1.Key);eIdHCs2_.Remove(eIdHc2.Key);
break ;

}
foreach (var eIdHc1 in eIdHCs1_)
{

if (eIdHCs2_.ContainsKey(eIdHc1.Key))
{ modifyEIds.Add (eIdHc1.Key); eIdHCs2_.Remove(eIdHc1.Key); }
else

delEIds.Add (eIdHc1.Key);
}
addEIds = eIdHCs2_.Select(idhc => idhc.Key). ToList ();

//quick: assuming no hash collision will happen
var eIdHC1_ = new Dictionary< int , long >(EIdHashCodes1);
var eIdHC2_ = new Dictionary< int , long >(EIdHashCodes2);

foreach (var eIdHc1 in EIdHashCodes1)
foreach (var eIdHc2 in eIdHC2_)

if (eIdHc1.Value == eIdHc2.Value)
{

unchangedEIds.Add (eIdHc2.Key);
eIdHC1_.Remove(eIdHc1.Key); eIdHC2_.Remove(eIdHc2.Key);
break ;

}
foreach (var eIdHc1 in eIdHC1_)
{

if (eIdHC2_.ContainsKey(eIdHc1.Key))
{ modifyEIds.Add (eIdHc1.Key); eIdHC2_.Remove(eIdHc1.Key); }
else

delEIds.Add (eIdHc1.Key);
}
addEIds = eIdHC2_.Select(idhc => idhc.Key). ToList ();

a) Matching-first algorithm b) Comparison-first algorithm

c) hash-code-accelerated algorithm d) Quick hash-code-accelerated algorithm

Category Id GroupId

Location Geometry IsTransient

Parameters LevelId IsValidObject

Name AssemblyInstanceId OwnerViewId

 BoundingBox ParametersMap

 CreatedPhaseId Pinned

 DemolishedPhaseId UniqueId

 DesignOption ViewSpecific

 Document WorksetId

6.2 Developed BIM Models 433

Lin et al. [32] developed 11 exemplary BIM models, named M1, that can be used as test cases for validating detection 434

methods. Because these BIM models are simple and contain only a few instances, this research develops two other groups 435

of BIM models that are more complex and can also be used as test cases. All these three groups of Revit BIM models 436

follow the same development rules; therefore, each group of BIM models has 11 models: one of them is the original model, 437

and the other 10 are derived models that include only one type of change from the original model as defined in Section 4. 438

The names of the original models of these three groups are M1, M2, and M3. M1 is a simple structure frame; M2 is an 439

example house and contains architectural and structural building information; and M3 is a Revit sample project named 440

rac_advanced_sample_project (http://www.autodesk.com/revit-rac-advanced-sample-project-2018-enu). Figure 11 shows 441

screenshots of the three original BIM models. Table 5 shows the design change information of these BIM models. A 442

repository containing these three groups of BIM models and their detailed descriptions was established on GitHub and can 443

be found at https://github.com/Zhou-Yucheng/Design-Change-BIM-Models. 444

The architectural model of a classroom building of a primary school, named M4, is also used in the test to compare the 445

detection performances of designers and the implemented methods. Figure 12 shows a screenshot of this model. 446

http://www.autodesk.com/revit-rac-advanced-sample-project-2018-enu
https://github.com/Zhou-Yucheng/Design-Change-BIM-Models

 447

Figure 11. Screenshots of the original BIM models M1, M2, and M3. 448

Table 5. Design change information of the three groups of BIM models M1, M2, and M3. 449

Model Name a Category of Data Change b Level of Design Change

Mx - -

Mx_All -A Added in P, A and R Instance

Mx_All -D Deleted in P, A and R Instance

Mx_All -DA(M) c Deleted and then added in P, A and R Model

Mx_A-MG Geometry modified in A Instance

Mx_A-MG(T) Geometry modified in A Type

Mx_A-ML Location modified in A Instance

Mx_A-ML(M) c Location modified in A Model

Mx_P-MV Value modified in P Instance

Mx_R-MI(M) Instance modified in R Model

Mx_R-MR Relationship modified in R Instance

a Mx denotes M1, M2, or M3. 450

b P, A, and R denote Property data, Appearance data, and Relationship data, respectively. 451

c These two models contain only meaningless changes (delete and recreate the same instances or exchange locations). 452

a) M1

b) M2 c) M3

 453

Figure 12. Screenshot of the BIM model M4. 454

6.3 Performance Comparison 455

6.3.1 Proposed Method and Existing Methods 456

With the developed application, this research tests the performances (correctness & time consumption) of the four 457

detection algorithms by detecting the changes between derived and original models in the first three groups of BIM models 458

(M1ïM3). Each test was performed twice in two different conditions: the ID is reliable or unreliable, where the ID of every 459

element was changed randomly under the unreliable ID condition. 460

Figure 13 shows the detection results of M3_All-DA(M) when the ID is reliable. In Figure 13a, the matching-first 461

algorithm detects all changes but includes meaningless changes. However, in Figure 13b, which shows the detection result 462

of the other three algorithms (since their detection results are the same), the detection result is that all elements are 463

unchanged, which is correct. Because the model M3_All-DA(M) (deletes some elements and recreates the same one) only 464

contains meaningless changes. Moreover, it can be concluded that hash collisions do not occur in the two hash-code-465

accelerated algorithms because the detection result of the quick hash-code-accelerated algorithm is the same as those of 466

the comparison-first and hash-code-accelerated algorithms. 467

When the ID is unreliable, the detection result of the matching-first algorithm is totally wrong, because almost all 468

elements will be judged as changed. However, the detection results of the other three algorithms are still correct and are 469

the same as shown in Figure 13b. However, in this condition, the time consumption of the comparison-first algorithm is 470

high to the point where it is unacceptable, while the time consumed by the other two hash-code-accelerated algorithms is 471

only slightly higher than under the reliable-ID condition. 472

 473

Figure 13. Screenshots of the results of the four algorithms for detecting M3_All-DA(M) when ID is reliable. 474

Table 6 summarizes the average time consumed by each of the four tested algorithms. The tests were performed on a 475

laptop with an Intel i7-9850H CPU (2.60 to 4.60 GHz). As Table 6 shows, when the ID is reliable, the time consumption 476

of the matching-first algorithm is the lowest, and the comparison-first algorithm consumes almost the same amount of time. 477

The time consumption of the quick hash-code-accelerated algorithm is approximately 5%~14% larger than that of the 478

a) Detection result of matching-first algorithm

b) Detection result of comparison-first, hash-code-accelerated and quick hash-code-accelerated algorithms

(Unchanged)

0 mod/8 del/8 add

0 mod/8 del/8 add

(Added)

(Deleted)

(Unchanged)

comparison-first algorithm, and the difference decreases as the number of elements increases (from M1 to M3). However, 479

the time consumption of the hash-code-accelerated algorithm is approximately twice that of the comparison-first algorithm, 480

and the difference increases with the number of elements. 481

When the ID is unreliable, the matching-first algorithm is not applicable. The time consumption of the comparison-first 482

algorithm increases dramatically because its detection time complexity is ὕὔ (where ὔ is the number of elements in 483

the models). When the element number is approximately 5000 or 13000, the time consumption increases by a factor of 484

approximately 10 or 50, which is unacceptable. In contrast, the time consumed by the other two hash-code-accelerated 485

algorithms is only 2%~5% larger than the time they consume when the ID is reliable. 486

Therefore, we can conclude that the time consumed by the two hash-code-accelerated algorithms is stable and ID-487

independent, while the time consumption of the comparison-first algorithm is sensitive to ID. When the ID is unreliable, 488

the quick hash-code-accelerated algorithm can save up to ρ ψȢτȾτυπȢρ ωψȢρϷ of time compared to the comparison-489

first algorithm. Therefore, in most cases, the quick hash-code-accelerated algorithm is recommended. The hash-code-490

accelerated algorithm can be optionally executed as a double-check; in this way, the hash codes are calculated by the former, 491

which saves time for the latter double-check process. 492

Table 6. Average time consumption of the four tested algorithms. 493

Condition Model Group Element Number Average Time Consumption (s)

 M C Hc Qhc

ID is reliable M1 2007 0.49 0.50 0.97 0.57

M2 4869 1.9 2.0 3.8 2.2

M3 12896 7.6 7.7 15.2 8.1

ID is unreliable M1 2007 - 2.8 0.99 0.59

M2 4869 - 21.2 4.0 2.3

M3 12896 - 450.1 15.5 8.4

Note. M, C, and (Q)Hc are the Matching-first, Comparison-first, and (Quick) Hash-code-accelerated algorithms, respectively. 494

 495

In addition to the above four algorithms, this research also tests IFCdiff [20]. As mentioned in section 2.2.2, IFCdiff is 496

a software application used to detect design changes in IFC files using a content-based comparison-first method. Table 7 497

shows the detection performances of IFCdiff and that of the quick hash-code-accelerated algorithm. Note that the IFC files 498

detected in IFCdiff are exported by the corresponding Revit files in Revit. 499

To measure the detection correctness, we adopt the similarity rate (ὔ᷊ Ⱦὔ , where ὔ᷊ is the number of equal 500

