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ABSTRACT Buildings consume a large proportion of global primary energy and building 10 

performance management requires massive data inputs. Key Performance Indicator (KPI) is a tool 11 

used for comparing different buildings while avoiding problems caused by heterogeneous data 12 

sources. However, silos of building and energy consumption data are separate, and the linkages 13 

between a KPI formula and different data sets are often non-existent. This paper develops an 14 

ontology-based approach for automatically calculating the KPI to support building energy 15 

evaluation. The proposed approach integrates building information from BIM and energy and 16 

environmental information collected by sensor networks. A KPI ontology is developed to establish 17 

a KPI formula, thereby linking static and dynamic data generated in the building operation phase. 18 

Each KPI can be defined by inputs, a formula and outputs, and the formula consists of parameters 19 

and operators. The parameters can be linked to building data or transformed into a SPARQL query. 20 

A case study is investigated based on the proposed approach, and the KPIs for energy and 21 

environment are calculated for a real building project. The result shows that this approach relates 22 

the KPI formula to the data generated in the building operation phase and can automatically give 23 

the result after defining the space and time of interest, thus supporting building performance 24 

benchmarking with massive data sets at different levels of details. This research proposes a novel 25 

approach to integrating the KPI formula and linked building data from a semantic perspective, and 26 

other researchers can use this approach as a foundation for linking data from different sources and 27 

computational methods such as formula created for building performance evaluation. 28 
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I. INTRODUCTION 32 

 33 

Buildings consume 40% of global primary energy[1], and are the most energy consumers in 34 

many countries and areas including the European Union[2], the USA[3] and China[4]. Researchers 35 

have found that systematic building energy management can help reduce energy use by 5% to 30%[1]. 36 

Building performance benchmarking (BPB) is an important approach utilized in building 37 

performance management as it compares performance metrics to best industry practices. 38 

By measuring performance with specific indicators, or key performance indicators (KPIs), 39 

BPB gives building managers a clear view of the targets they need to meet to achieve efficient 40 

building energy consumption. For example, electricity, gas and water consumption per square meter, 41 

per person served or per guest room, and output/input ratio of building equipment are usually used 42 
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in comparing a facility’s performance with others’. To formulate the calculation process of KPIs, 43 

formula or equations are always used. A well-defined KPI provides a quantitative metric to compare 44 

buildings under different conditions regardless of building-specific factors and compare buildings 45 

under different conditions. that is, KPIs make it transparent so the building managers could find 46 

what’s going well and what to do to further improve performance of a facility[5]. 47 

Meanwhile, it also compiles multiple data sources to calculate KPIs of a facility[6]. Not only 48 

performance sensing data based on Internet of Things (IoT) technology, but also properties and 49 

topological connections of spaces and building service systems are required[7]. Collected sensing 50 

data is usually modeled as time series and persisted in database, while data related to spaces and 51 

service systems is stored in as-design or as-built models based on CAD or BIM these days[8]. 52 

However, these data usually reside in different systems (or sources) and heterogeneous formats. 53 

Lacking of interoperability between different data silos hinders fully utilization of building energy 54 

data. Plenty of efforts have been invested in the integration of different data models to explode the 55 

value of big data. For example, Curry et al.[9] combined scenario modeling and linked data from 56 

different data silos to make assessments. Corry et al.[10] extended the use of linked data to establish 57 

the mapping between existing databases to aid assessments. Based on these works, it could be 58 

concluded that current works mainly focus on transforming one model to another or establishing 59 

semantic links between different data models. Nevertheless, few attentions were paid to semantic 60 

links between parameters of KPI formula and properties of data models. In this manner, process of 61 

calculating a specific KPI consists of 1) extract data from different data sources, 2) manually map 62 

extracted data to parameters of KPI formula, 3) calculate KPI based on mathematic formula 63 

automatically. This is time-consuming, tedious and error-prone. Even though automatic calculation 64 

of KPI is investigated previously, equations are embedded or hard coded in applications. Which 65 

means, there lacks the flexibility in creating or updating KPIs in accordance with clients’ favor. 66 

To solve the problem of the lack of data linkage, semantic web technologies provide an 67 

opportunity to represent information in structured graphs and integrate information from different 68 

sources. Semantic web technologies can be used to improve data interoperability, linkages across 69 

domains and logical inference methods[11]. An ontology can be developed with semantic web 70 

technology and defined as an explicit and shared conceptualization of a given domain that provides 71 

explicit logical assertions about information, which aids in converting human knowledge into a 72 

computer-understandable format[12,13]. In recent years, ontology and semantic technology have been 73 

widely used in the construction industry[11]. 74 

However, most research did not focus on linking input with KPI formula and the process is 75 

accomplished manually, which causes much rework Some ontologies have been established to 76 

increase the operability of building related data, but these research focuses on the data itself, not on 77 

the linkage between data and KPI formula, leaving alone the process of obtaining and loading data 78 

into the formula. To solve this problem, an otology is developed to link building energy data and 79 

the KPI formula, and an approach to calculate key performance indices using data integrated from 80 

heterogeneous data sources is proposed. 81 

The remainder of the paper is organized as follows. In section II, a brief literature review is 82 

given, and the research gap is identified. In section III, an ontology to describe building energy 83 

consumption is developed, and a methodology for KPI calculation is proposed and introduced in 84 

detail. In section IV, a case study is provided to identify possible application scenarios and validate 85 

the feasibility of the proposed approach. Section V summarizes the conclusions, limitations and 86 
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future research. 87 

 88 

II. RELATED WORKS 89 

 90 

A. Sensor and Building Information Integration 91 

BIM (Building Information Modeling) is a process supported by various tools and technologies 92 

involving the generation and management of digital representations of the physical and functional 93 

characteristics of places[14]. Information generated throughout the design, construction and 94 

operation stages can be integrated to form nD models in a unified framework[15]. Therefore, the 95 

integration of building performance data into BIM has a promising future for the precise 96 

management of building operations[16]. 97 

The major data source of a building operation phase is the sensor system. Sensors in buildings 98 

are utilized to constantly collect real-time information, including (1) energy consumption (electricity, 99 

water, gas consumption, etc.), (2) device operation (the operation statuses of air conditioners, heaters, 100 

etc.), and (3) environmental quality (temperature, humidity, concentrations of toxic gases, etc.) 101 

information. 102 

Many buildings are equipped with building management systems, which consist of monitoring 103 

and control parts. These systems are utilized to monitor environmental quality and energy 104 

consumption throughout the building operation phase and control each device according to 105 

predefined strategies [17]. 106 

Several studies have attempted to integrate sensor data with BIM. For instance, Arslan et al. 107 

developed a prototype system called the “real-time environmental monitoring, visualization, and 108 

notification system” using BIM and wireless sensor networks (WSNs)[18]. Riaz et al. proposed a 109 

BIM- and sensor-based data management system for automating the management of health and 110 

safety issues at construction sites[19]. Natephra et al. proposed the integration of thermal and 111 

environmental data provided by sensors with BIM to assess the thermal performance of the building 112 

envelope[20]. Suprabhas and Dib discussed the feasibility of using sensor data combined with BIM 113 

for maintenance-based facility management[21]. 114 

In these studies, monitoring data were integrated with BIM in many scenarios; however, energy 115 

consumption monitoring data have seldom been collected and integrated with BIM in a standardized 116 

data model for further utilization and analysis. 117 

B. Building Related Ontologies 118 

There are a number of available ontologies that are aimed at sharing and connecting cross-119 

domain data in the building domain[11]. For example, the ifcOWL ontology is defined as an OWL 120 

(web ontology language) representation of IFC (industrial foundation classes) data and serves as an 121 

alternative representation of the EXPRESS schema of IFC[22]. A corresponding file-based IFC-to-122 

RDF (resource description framework) conversion application has been developed[23]. The semantic 123 

sensor network (SSN) ontology is based on the concept of a stimulus prompting an observation[24]. 124 

The SSN includes sensors, their observations, and knowledge of their environment[25]. The BOT 125 

(building topology ontology) is a minimalist ontology for describing the core topological concepts 126 

of a building[26]. BOT deletes the unnecessary details of ifcOWL in the scope of the geometric and 127 

topological representations of a building in specific cases. 128 

One primary example of an energy simulation model is SimModel, which was devised as an 129 

interoperable data model for the exchange of simulation data between energy simulation tools. This 130 
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model is available in an OWL ontology[27] and can be used to generate RDF graphs of model data[28]. 131 

By exporting the data into an RDF data model, they can be easily combined with other RDF data. 132 

However, the actual combination and management of IFC and SimModel graphs remain topics of 133 

discussion. Sørensen et al. reviewed the existing ontologies relevant to creating digital links between 134 

virtual models and physical components in the construction process to improve information 135 

handling and sharing in construction and building operation management[29]. Corry et al. proposed 136 

a semantic-based approach to integrating heterogeneous building data[30]. Semantic web 137 

technologies have been used in environmental monitoring to facilitate knowledge encoding and data 138 

integration outside the construction environment[31]. Metal et al. used an ontology to integrate air 139 

quality and 3D city models[32]. Opera described an ontology for air pollution analysis and control 140 

and applied the ontology in expert and multiagent systems[33]. Reitzes and Snyder developed an 141 

ontology for real-world indoor environmental quality monitoring and control[34]. Stocker et al. 142 

devised an ontology-based environmental monitoring system to measure and compute mean hourly 143 

PM2.5 concentrations[35]. Pundt et al. described the use of ontologies via the Internet on the basis of 144 

an example involving GIS (Geographic Information System) supported environmental monitoring 145 

in the field[36]. Dibley et al. proposed an ontological framework for intelligent sensor-based building 146 

monitoring with a focus on the ontology development process to deliver an intelligent multiagent 147 

software framework that supports real-time building monitoring[37]. Moreover, there are also a few 148 

attempts to devise a comprehensive ontology to express the linkage between monitor data and 149 

building itself. Balaii et al devised a uniform schema for representing metadata in buildings called 150 

Brick, linking location, equipment and measurement[38]. Mahdavi et al. devised an otology for 151 

building monitoring, linking building environment, inhabitant and control systems and devices[39-152 
41]. Yehong Li et al. developed an ontology called EM-KPI focusing on energy management in 153 

district and building levels, with a reference to MathML to express the definition of KPIs and input 154 

parameters can be extracted[42]. 155 

These existing ontologies mainly focus on the environment at the urban level, and the 156 

information related to building environmental monitoring is not effectively organized, and recent 157 

attempts to express building monitoring data still leaves it open to establish a method to explore the 158 

data. An integrated semantic modeling approach for the KPI of building performance would be 159 

beneficial to comprehensively understanding building performance. 160 

C. Other Recommendations 161 

Several studies have developed applications to support building performance analysis by 162 

combining building information and energy consumption data[11,43] 163 

For instance, Curry et al.[9] combined scenario modeling and linked data to support decisions 164 

in building design and operation stages. Curry et al.[44] and O’Donnell et al.[45] further extended the 165 

use of linked data combined with diverse cross-domain building data to support operational building 166 

management. Corry et al.[10] discussed using semantic web technologies to aid the integration of 167 

AEC data into an existing building performance framework for evaluating building performance in 168 

the operational phase. Corry et al.[46] also developed a performance assessment application based 169 

on a corresponding ontology. Shushan Hu et al.[47] attempted to combine linked data with OpenMath 170 

to retrieve information from separate multibases and describe building performance metrics. Botao 171 

Zhong et al.[17] developed an ontology for building environment compliance assessment. 172 

Tomasevic et al.[48] focused on the operational phase and discussed the use of an ontology-173 

based building performance analysis method to provide feedback to facility managers. Furthermore, 174 
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Dibley et al.[37,49] proposed an OntoFM system to support real-time building monitoring with a 175 

multiagent system and access to semantic building data. The building data can be tracked by the 176 

OntoSensor ontology[50] and a general-purpose ontology, the Suggested Upper Merged Ontology 177 

(SUMO[51]). 178 

These studies suggest that ontological methods are promising for the integration of relevant 179 

data generated by different sources and can support data inference. However, previous research 180 

focused on building data integration and succeeded in integrating static building data, sensor 181 

networks, energy consumption data, etc.; however, a common method of processing integrated data 182 

does not exist. The performance evaluation process is separate from data collection, and data are 183 

first retrieved and analyzed with predefined formulas. Little attention has been paid to linking the 184 

semantics of the formula parameters with the data to support automatic and iterable building 185 

performance evaluations. Therefore, this research sheds light on the use of the KPI formula with 186 

linked data and the identification of the relationships between formulas and data to achieve 187 

automatic and iterable building performance evaluations. 188 

 189 

III.  METHODOLOGY 190 

 191 

 192 

FIGURE 1.  Overall methodology for ontology-based KPI Calculation 193 

 194 

The overall methodology for KPI calculations based on the proposed ontology is shown in Fig. 195 

1. The entire process requires linkages between building, sensor and observation data, so ontologies 196 

representing each discipline are developed. In this process, the information required for KPI 197 

calculations is first analyzed. The relevant existing ontologies related to building and sensor 198 

networks are also reviewed and used in the research. A KPI ontology linking these data is developed 199 

to form an integrated fusion model that uses the KPI formula and supports automatic KPI 200 

calculations. The ontologies are then created and validated with the help of Protégé, an open-source 201 



preprint 

ontology editor. 202 

Static and dynamic data are then converted to instances according to the ontologies established. 203 

In this study, BIM and the monitoring platform are the major data sources. The relevant data are 204 

extracted and converted into instances and stored in an RDF file with the help of the open-source 205 

library dotNetRDF in C#. 206 

A KPI formula is first developed and then applied using the established ontology. A program 207 

is developed for users to create a KPI formula template in a graphical user interface and query 208 

calculation results in a certain space and time period. 209 

 210 

IV.  IMPLEMENTATION 211 

 212 

A. Ontology development 213 

1) Information Requirement 214 

Building energy consumption monitoring and evaluation mainly require information from 215 

various data sources, including information about buildings, sensors, and energy consumption. 216 

These data can be divided into two main categories: static data and dynamic data. Static data are 217 

those that do not change with time or that remain constant over a relatively long period of time. 218 

Dynamic data are those that vary over time and are often in the form of streaming data. Static 219 

information and dynamic information must be linked to each other to yield an accurate KPI result, 220 

as shown in Fig. 2. 221 

Static information includes (1) basic building information describing the building nature, such 222 

as building identifier, type, usage, and completion time information. This type of data generally 223 

requires manual inputs; however, BIM and some existing building monitoring systems may provide 224 

some related information[52]. (2) Building geometric & topological data describing the space and its 225 

distribution, including the building area, adjacent relations, and the hierarchy of spaces, are required. 226 

This type of data can be obtained from BIM. (3) A sensor network with known sensor type, position, 227 

accuracy, and collection frequency information is necessary. This type of data can be obtained from 228 

a sensor platform; however, some manual work may also be required. 229 

Dynamic information is automatically and periodically collected by sensor networks and is 230 

often stored on monitoring platforms. These data include (1) energy consumption data describing 231 

electricity, water and gas consumption in different spaces and from different sources and (2) 232 

environmental information describing the environmental status, including temperature, humidity, 233 

CO2 concentration, and other data. 234 

 235 

FIGURE 2.  Information requirement for energy consumption evaluation 236 

 237 

According to the information requirements above, ontologies describing the building 238 
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information and sensor networks are selected and designed to represent the relevant information and 239 

linked data. 240 

2) Building information ontology 241 

There are some available ontologies that can be used to share and connect cross-domain data 242 

in the building domain. For example, the ifcOWL ontology was developed as an OWL 243 

representation of IFC data and serves as an alternative representation of the EXPRESS schema of 244 

IFC. ifcOWL is equivalent to IFC; hence, it includes literally everything in the IFC schema. 245 

However, ifcOWL is too complicated for building information representation in this research. As an 246 

alternative, BOT is a minimalist ontology that reflects the core topological concepts of a building. 247 

This approach was developed by the W3C Community Group. Considering the underlying problem, 248 

BOT is suitable for geometric and topological representations.  249 

The major structure of BOT ontology is as Fig 3. The classes of the BOT ontology have the 250 

prefix “bot” and mainly include bot:Zone and bot:Element and are related with bot:hasElement. 251 

These instances represent the geometric and topological characteristics of a building. Class bot:Zone 252 

is divided into four layers: site, building, storey and space, making a parent-child reference 253 

relationship with bot:containsZone to form a tree structure. Class bot:Element describes roofs, doors, 254 

windows and exits in this research because the amount and form of them affect energy consumption. 255 

 256 

FIGURE 3.  Building information ontology 257 

 258 

3) Sensor information ontology 259 

The SSN ontology was developed by the World Wide Web Consortium (W3C) Semantic 260 

Sensor Networks Incubator Group and is an ontology that describes sensors and their observations. 261 

The SSN includes a lightweight and self-contained core ontology called SOSA (Sensor, Observation, 262 

Sample, and Actuator) that encompasses the basic classes and properties. This ontological 263 

framework can describe sensors, observations and other related information as in Fig 4. 264 

Each building may have one or more sensor platform represented by sosa:Platform, and they 265 

contain several sensors (sosa:Sensor). Each sensor locates in some certain space which is related to 266 

bot:Space, however, it must be made clear that the position of the sensor is not necessarily equal to 267 

the feature of interest. The core class in sensor ontology is sosa:Observation, linking the observation 268 

value with sosa:hasSimpleResult, and linking the observation time with sosa:resultTime. Moreover, 269 

each observation needs to be related to the space or equipment that the sensor monitors represented 270 

by sosa:featureOfInterest, which is an equivalence to bot:Space. 271 
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 272 

FIGURE 4.  Sensor information ontology 273 

 274 

4) KPI Ontology 275 

The calculation of KPI requires an understanding of the linkages among different data sources, 276 

however, all the information needed is generated, stored and represented in different data formats 277 

in various information systems. This approach poses a considerable challenge for supporting energy 278 

consumption analysis. Fig. 5 shows an example of an energy consumption efficiency KPI, and 279 

breaking data storage barriers is crucial. 280 

 281 

FIGURE 5.  Information requirement for energy consumption evaluation 282 

 283 

This research establishes a KPI ontology to recognize the linkage between different data 284 

sources. Each KPI indicates the energy consumption efficiency or building performance of a space 285 

or the entire building in a certain period from a specific perspective. Hence, the formula often 286 

requires lists of data in a time period, and the data source is often the sensor network, which is 287 

related to the building geometry and topology. 288 

The calculation process associated with a KPI formula includes (1) computations with a 289 

constant, e.g., unit conversion, (2) aggregation operations on a list of data, e.g., averaging and 290 

summing, (3) normalizing the value or comparisons at different scales, and (4) evaluating the output 291 

differences before and after a period. Each calculation process can be represented by a tree, where 292 

both arithmetic calculations and aggregation operations are utilized for data lists. 293 

The KPI ontology links data related to the building topology & geometry and sensor network, 294 

as well as collected data. This ontology aims at representing a KPI semantically and supports the 295 

retrieval of relevant data and automatic calculations. This ontology mainly consists of three 296 
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components: input, output and process components, with an indicator class in the center. 297 

 298 

FIGURE 6.  KPI ontology 299 

 300 

The input component of the ontology describes the external parameter of the KPI. These inputs 301 

constrain the context of the KPI assessment, e.g., the space, building elements, MEP equipment, 302 

and time period. These data, once retrieved, can be treated as required inputs for the indicator. 303 

The output component of the ontology describes the KPI results. After the calculation is 304 

performed, the results can be saved as linked data, making it possible to retrieve the results without 305 

reperforming the calculation. 306 

The process component describes the calculation process of the KPI and is the core of the 307 

ontology. Each indicator can be calculated through a mathematical expression, which can be broken 308 

down into trees consisting of parameters and operators. The parameter type can generally be divided 309 

into 4 categories: 310 

(1) a single numeric parameter; 311 

(2) a single parameter that can be retrieved from the ontology; 312 

(3) a list of parameters that can be retrieved from the ontology; 313 

(4) a subexpression. The parameters that are hidden in the ontology are further linked with the 314 

class kpi:Data, which is equivalent to sosa:Observation. The kpi:SPARQL and kpi:Placeholder 315 

classes are linked to locate the exact instance. 316 

The operators mainly consist of 3 types: 317 

(1) unary operators, including -, sqrt, etc.; 318 

(2) binary operators, including +, -, *, /, ^, max, min, etc.; 319 

(3) aggregation operators, including sum, average, standard deviation, max, min, etc. 320 

B. Data Preparation 321 

On the basis of the ontologies established above, the required information can be represented 322 

as ontological instances for energy usage evaluation. Most of the static data, including basic building 323 

information, the topological and geometric properties of buildings and the positions of sensors, are 324 

included in BIM. Exemplified by Autodesk Revit, the information can be extracted through 325 
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embedded functions using the Revit API. Once the building information model is created to the 326 

level of detail of the required information, data can be extracted and then converted into ontology 327 

instances. In this research, an open-source library called dotNetRDF developed in C# language is 328 

used to process this conversion. By using this library, the structured data can be read and converted 329 

to ontological instances on the basis of the predefined ontological structure, and an adRDF/XML 330 

file is generated as the output. 331 

Dynamic data are those collected by sensors and are typically stored on a monitoring platform 332 

in a structured format. An interface is developed to read the .csv data generated, which is convert 333 

into ontological instances. The linkage between the static data and dynamic data is based on sensor 334 

identification. Each data set includes information about the sensor that made the observation, and 335 

for the static data, each sensor is included in the space, thus supporting analyses in both space and 336 

time. 337 

C. Formula Representation 338 

A KPI is often expressed as a mathematical formula. This index is linked to the formula and 339 

various inputs. The formula can be used to calculate the index values; for example, the total 340 

electricity use per day equals the difference in the electricity meter reading between the start and 341 

end of the day divided by total time in a day. Prior to extracting information and performing 342 

calculations, the relevant inputs, including those related to the time period and space of interest, 343 

must be specified. These nodes are related to the index by kpi:Input. The formula linked to the index 344 

consists of parameters and operators. A SPARQL query statement with placeholders is linked to 345 

extract the corresponding data, where a placeholder is a proxy that is replaced by external parameters. 346 

The aim of utilizing KPI is eliminating the difference in area or scale to facilitate the comparison 347 

between spaces or buildings and give a benchmark for building energy performance, and the KPI 348 

could also serve as normalized input for data mining to grasp the energy consumption pattern of 349 

different buildings in a district. There are several commonly used KPIs as listed in Table 1 to 350 

evaluate the overall energy consumption, energy consumption of specific usages, energy 351 

consumption of specific spaces and effectiveness of MEP systems and equipment.  352 

 353 

TABLE 1.  Examples of commonly used KPIs 354 

Genre KPI time period 

KPI for overall 

energy 

consumption 

total electricity consumption per area/capita  per day/ per year 

total fuel consumption per area/capita per day/ per year 

total water consumption per area/capita per day/ per year 

KPI for energy 

consumption of 

specific usages 

electricity consumption for cooling per area per day/ per year 

electricity consumption for heating per area per day/ per year 

electricity consumption for lighting per area per day/ per year 

electricity consumption for ventilator per area per day/ per year 

electricity consumption for elevator per area/capita per day/ per year 

KPI for energy 

consumption of 

specific spaces 

electricity consumption of public space per area per day/ per year 

electricity consumption of rental space per area per day/ per year 

electricity consumption of restaurant per area/capita per day/ per year 

electricity consumption of guest rooms per available room per day/ per year 

PUE (Power Usage Effectiveness) of information center per day/ per year 

KPI for MEP electricity consumption of cooling station per area per day/ for cool 
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systems and 

equipment 

supply season 

electricity consumption of air conditional terminal per 

area 

per day/ for cool 

supply season 

EER (Energy Efficiency Ratio) of water chiller for cool supply 

season 

EER of cold/heat source equipment for cool/heat  

supply season 

EER of cooling station equipment for cool supply 

season 

 355 

D. Indicator Calculation 356 

The structure of the algorithm used to calculate a KPI is presented in Fig. 7, and the following 357 

steps are required. 358 

 359 
FIGURE 7.  Algorithm to calculate KPI 360 

 361 

The user first selects a KPI and specifies the required inputs, including the time period and 362 

spatial domain. The instances representing the inputs are extracted, and the formula is then parsed 363 

into an operator and parameters. If the parameter is a sub-formula, the parsing process is repeated. 364 

If the parameter is an explicit value, the value can be directly established. If the parameter needs to 365 

be retrieved from the ontology, a SPARQL query is first performed, and the placeholder is replaced 366 

with the corresponding inputs. Then, the query is performed to obtain the required values. The 367 

parameters and operator finally form a simple formula that is used to calculate the result. 368 

V.  CASE STUDY 369 

A. Project Information 370 

To validate the KPI calculation approach presented in section III and IV, we chose two office 371 

buildings both located in Shanghai, China as an application case study (Figure 8). One building is 372 

Xinzhuang Comprehensive Building (hereinafter building 1), which measures 22 meters in height, 373 

with 7 floors aboveground, and 1 floor underground, totaling an area of 9,992 square meters. The 374 

second building is Shanghai Jianke Building (hereinafter building 2), which measures 102 meters 375 

in height, with 24 floors aboveground, and 2 floors underground, totaling an area of 38,189 square 376 



preprint 

meters. For these two buildings, sensors are installed on each floor to collect electricity consumption 377 

in total and by item, including lighting, socket, and air-conditioning over a 15-minute interval. These 378 

two buildings differ in the scales but they are both functioning as office buildings and are in the 379 

same city. Therefore, they are comparable only if the factor of building scale can be eliminated, so 380 

taking advantage of KPI could facilitate the comparison of building energy performance and could 381 

also give a benchmark for other buildings in the same area. Another difficulty to compare is that the 382 

sensors and sensing platforms of the buildings are from different companies, and the dynamic data 383 

is isolated from other data silos at present, making it difficult to interpret information hidden in the 384 

data and to perform comparisons among similar buildings. To facilitate energy data analysis, we 385 

propose the use of linked data to connect data silos and calculate KPIs for evaluating the energy 386 

consumption efficiency. 387 

 388 

 389 

FIGURE 8.  Photo of Xinzhuang Comprehensive Building and Shanghai Jianke Building 390 

 391 

As stated in section III, energy KPI calculations require an understanding of the correlations 392 

among different data sets, specifically, building topology and geometry, sensor network and 393 

observation data sets, to form a group of linked data. 394 

 395 

FIGURE 9.  RDF graph of ontology instances of building 1 396 

 397 

Building topology and geometry data are extracted from the BIM file of the project. The sensor 398 

network information is extracted from the energy monitoring platform and manually linked to the 399 

corresponding space of the building topology. Observation data, including electricity usage and 400 

temperature data from 2018 to 2020, are exported in CSV format. All the data above are read using 401 
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the dotNetRDF library, converted into ontological instances and stored in RDF format. As an 402 

example, the RDF graph of ontological instances of building 1 is shown in Fig. 9. 403 

B. Define a KPI Formula 404 

The electricity consumption per area per day is a basic KPI used to evaluate the electricity 405 

usage intensity. This indicator eliminates the influence of area and thus can be used to compare 406 

different spaces inside a building as well as different buildings of a similar type. To calculate this 407 

KPI, the linkages between the building, sensor network and observations are necessary. The 408 

ontological instances for electricity consumption per area per day are shown in Fig. 10 and Fig. 11. 409 

 410 
FIGURE 10.  Representation for electricity consumption per area per day 411 
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 413 
FIGURE 11.  Representation for electricity consumption per area per day 414 

 415 

C. KPI Calculation 416 

This KPI also requires space, start time and end time inputs. The formula first involves the 417 

total electricity per area divided by time, where the time can be calculated through the time 418 

difference at the start and end of the selected period. The total electricity per area is the total 419 

electricity divided by total area. The total area can be queried through SPARQL with the input space 420 

as the placeholder. Total electricity is the difference in electricity meter observations between two 421 

endpoints. Each observation can be queried by SPARQL with space and time placeholders. 422 

In this case, the electricity consumption per day per area of the two buildings in July 2020 are 423 

derived and shown in Fig 12. As can be seen in the graph, the electricity consumption of both 424 

buildings fluctuates on a weekly basis, with higher consumption on weekdays and lower on 425 

weekends, which agrees with the function of office buildings. The energy consumptions in both 426 

buildings show an upward trend, and the reason may be the consumption of air conditioning 427 

increases as the outdoor temperature rises to keep the indoor environment steady. In the comparison 428 

between the two building, building 1 earned green building label three stars and it outperforms in 429 

the overall energy efficiency according to the result of KPI. 430 
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  431 

FIGURE  12. Comparison of electricity consumption per area per day of the two buildings 432 

 433 

To achieve a further insight of this difference, we could further analysis the energy 434 

consumption for different usage, e.g., lighting and air conditioning. These buildings located in 435 

subtropics and air conditioning is the major consumption of electricity. Fig 13 shows the 436 

Comparison of electricity consumption for lighting (left) and air conditioning (right) per area per 437 

day of the two buildings. The electricity consumptions of both usages share the pattern of total 438 

consumption, however, air conditioning contributes larger so it should be the focus to save energy. 439 

  440 

FIGURE  13. Comparison of electricity consumption for lighting (left) and air conditioning 441 

(right) per area per day of the two buildings 442 

 443 

Besides the comparison between different time, building and item, the difference between 444 

different spaces inside a building can also be derived easily as the relationship between data silos 445 

are identified in the linked data and the KPI formula are the same regardless of the space. Manager 446 

may be interested if there is any space that are wasting electricity or the pattern disagrees with other 447 

spaces. Taking building 1 as an example, the total electricity consumption per area per day of 448 

unit: kWh/day 

unit: kWh/day unit: kWh/day 

unit: kWh/day 
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different storeys and we found no significant different between these storeys, and user can easily 449 

browse any space in the building as described in the linked data. 450 

 451 

D.  Discussion 452 

In the scenarios above, a KPI formula is demonstrated with real-life data. In this case, the 453 

formula can be represented according to the established ontologies using a program with a user 454 

interface, input parameters, and specific calculation process, which yields the relevant results. In 455 

terms of calculations, the user selects the space and time of interest to obtain information from the 456 

linked data, and the calculation process is automatically implemented. This process can also be 457 

iterated based on a list of spaces or times to compare the corresponding KPI values. 458 

Traditional methods require queries of raw data from different data silos, and the relationships 459 

between the formula parameters and data must be manually determined in many cases. Moreover, 460 

manual assessment is required throughout much of the analysis process, making it difficult to 461 

automate or iterate. This research integrates data from different sources with related ontologies and 462 

links the data with the corresponding KPI formula to achieve automatic KPI definition and 463 

calculations. The link between the two ontologies are realized with SPARQL, when parameters in a 464 

formula needs to be modified, user can revise the query statement to amend the linkage, and this 465 

approach can also deal with difference in data structures of data silos. 466 

Moreover, ontology-based approach also benefits to handle tree-structured data. Building 467 

spaces and MEP systems can both be expressed in the form of a tree. Sensors linked to the children 468 

of a node are all contribute to the parent sensor semantically. Ontology-based approach can handle 469 

the case with the help of the inference function, which is complicated to accomplish by querying 470 

into the database. 471 

In this case study, we found existing ontologies could contribute to the scenario, however, each 472 

ontology requires extension according to specific requirement. For instance, SOSA ontology models 473 

observation for all data collected, nevertheless, in the process of building performance evaluation, 474 

specific indices have to be defined explicitly to achieve a comprehensive evaluation. Hence, in this 475 

research, classes in the existing ontologies are further extended for actual utilization. Similar method 476 

could be also applied to MEP system analysis, including making extension to MEP system entity 477 

and establish the linkage between MEP equipment with corresponding spaces thus supporting 478 

further evaluation and analysis. 479 

It should be noted that this research focuses on validate the feasibility of the proposed method 480 

to automatize the process of retrieving data from different data silos and derive the result of a typical 481 

KPI, and only a few simple KPIs are taken as examples to illustrate the process. Even though the 482 

utilized KPI is a simple approximation of the performance, comparing the same KPI of two similar 483 

buildings could help us understand why a building performs better than the other one, and then 484 

building managers could make better decisions to improve building performance. However, it has 485 

to be clarified that an accurate assessment of building performance requires a comprehensive 486 

framework where a set of indicators are needed to fully describe the real energy performance of a 487 

building because the performance depends on multiple variables. And an assessment framework 488 

which could give an accurate and rigorous depiction of the energy performance is open for future 489 

research. 490 

 491 

VI. CONCLUSION 492 
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 493 

Buildings consume a large proportion of global primary energy and building performance 494 

management requires massive data input. KPI is a common means to evaluate building performance, 495 

but the data silos of building information and energy consumption are separated and heterogeneous, 496 

and the linkage between KPI formula and data are not recognized. This paper develops an ontology-497 

based approach to calculate key performance index automatically to support building energy 498 

evaluation among different information systems. A case study is conducted in which the approach 499 

is applied, and the KPIs for energy consumption and building environment is calculated in a real 500 

building project after selecting the space and time period of interest. The results validate the 501 

feasibility and effectiveness of the proposed approach. 502 

This research attempts to shed light on involving formula into building linked data semantically 503 

and other researchers can use the approach as a step stone to further involving data from different 504 

sources to enhance building performance evaluation. Linking KPI formula into building linked data 505 

semantically benefits to make use of the advantage of ontology that inference can be accomplished 506 

automatically. Heterogeneous data can be processed in a standardized approach and relativity in 507 

tree-structured data can be understood. 508 

Formula in this research can be further extended to more complex computation modules. For 509 

instance, existing simulation models require data from building linked data. In this case, formula in 510 

this research can be extended to simulation models, where input and result can be provided in a 511 

similar way, and the computation process will be accomplished by external programs. External 512 

factors such as climate conditions and human behaviors could be considered in more complex 513 

models, extending the utilization of KPIs. Thus it is promising to connect to data analytic tools by 514 

retrieving corresponding data input, supporting further data utilization. 515 

Further work may also involve extending existing ontologies for specific scenarios. In this 516 

research, observation class is extended to specific subclasses of particular items. Building class is 517 

also extended to specific types of buildings. In further research, more extension can be made aiming 518 

at various scenarios. The framework of this approach also simulates researchers to contribute to the 519 

building related ontologies. 520 

Buildings generate dynamic data continuously, therefore, the linked data could be too large to 521 

store in one single server. A distributed data storage approach might be able to solve the problem. 522 

Additionally, in the era of big data, the principle of moving computation closer to data can solve the 523 

pressure of data transmission. How to achieve moving code to data is also an open question to solve 524 

in the future. 525 

KPI ontology is useful as it opens the way to define, calculate, and analyze different and 526 

valuable energy KPIs, however, smart metering systems and the current management tools of 527 

facility managers also offer opportunities and a more accurate way to help FM in their daily energy 528 

management in a certain building, while KPIs offer an opportunity to management buildings in a 529 

district as a whole. Future work also involves utilizing the result of the comparison KPIs and sharing 530 

energy saving approaches with other buildings in the same district, combining the energy 531 

management in building level and district level. 532 
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