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Abstract 

Simulation method is widely used in system reliability analysis and not affected by the dimension of state function. But traditional 
simulation method will need large number of samples to obtain more accurate results when the failure probability of each component 
is quite low. Survival signature theory divides the system reliability into probability structure and system structure, which makes the 
calculation process easier and clearer. However, the assumption that components are independently and identically distributed ( ) is 
very idealistic which hinders the further application of this method. This paper presents two methods to calculate system reliability 
based on survival signature theory system with independent but nonidentical components and dependent components. This paper 
mainly discuss the complex calculation of nonidentical components and the exchangeability assumption of related components. 
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1. Introduction 
System reliability analysis is of great significance in 

engineering projects, especially for large complex systems 
including power network, water supply network and 
communication network. These systems typically have 
many components that are strongly correlated. Many 
system analysis approaches have been developed, for 
examples, fault tree (FT) model, binary decision diagram 
(BDD), Bayesian networks (BNs). These methods could 
identify the failure modes of the system and calculate the 
corresponding reliability. However, the modelling and 
reliability analysis of complex systems, which cannot be 
simply divided into a combination of series and parallel 
subsystems or with diverse external load conditions, are 
very challenging. Coolen and Coolen-Maturi had 
developed the survival signature approach, which can 
analyse complex systems with several types of components 
and inherits all the merits from system signature [1]. 
Survival signature theory can also work with arbitrary 
dependent structures between failure events. But the 
exchangeability assumption still must be satisfied in 
survival signature theory, and in most application scenarios, 
it is often replaced by the stronger assumption of 
component independent and identical ( ) distribution 
[2],[3],[4]. The following is a brief introduction to survival 
signature theory and its fundamentals. The following is a 
brief introduction to survival signature theory and its 
fundamentals. 

Suppose a system consists of  components with  
types of subsystems. Each subsystem has  components 
and . The state vector 

 is defined to describe the working state for all 
components while  if the -th component functions 
and  if not.  defines the 
system structure function while  if the system 
fuctions and  if not. For such a system, the 
survival signature is denoted by  with 

 for , which is defined to be the 
probability that the system functions given that  of its  
components of type  work, for each . 
There are  state vectors 

 with  components working in 
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subsystem . Let  denotes the set of all state 
vectors for the whole system when  components working 
in the subsystem  ( ). Assume all the 
components are fully independent and components in the 
same subsystem are identically distributed (iid, 
independent and identically distributed), the survival 
signature can be calculated by the formula below 

 

Let  denote the number of  
type components working at time  and the components in 
the same type subsystem have a known cumulative 
distribution function ( ), , then: 

 

Hence, the survival function of the system with  types 
of components can be formulated as: 

 

In Eq. (3), the survival signature  is also 
called system structure while  is the 
probability structure in the survival function. The system 
structure is completely determined by the composition of 
the system and the system failure mode in the iid 
assumption. The probability structure describes the 
probability of the occurrence of different state vectors. In 
this paper, we discuss about two situation that survival 
signature theory might be used in reliability analysis, 
system with independent but nonidentical components and 
system with dependent components. 

2. Algorithm for systems with independent but 
nonidentical components 

2.1 Algorithm for computing probability structure 
When the components are nonidentical, the probability 

structure can no longer be expressed in the Bernoulli form 
of Eq. (2). Divide and conquer [5] refers to a class of 
algorithm techniques in which the target problem is broken 
into several parts, solves the problem in each part 
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recursively, and then combines the solutions to these 
subproblems into an overall solution. As shown in Eq. (2), 
it is quite cumbersome to calculate  different equations 
(each of these equations is multiplied by  component 
probabilities) one-by-one when  or  gets larger. 
Nevertheless, the computation can be much easier if it is 
divided into several minor groups of calculations. For 
example, the recursive equation based on Bernoulli 
binomial in Eq. (4) shows the relationship between the 
system with  components and two divided subsystems 
with  components 

 

In consideration of the characteristics of Bernoulli 
polynomials and the computational efficiency, each 
decomposition is dichotomized. However, not every 
partition will divide  into two sub-problems of  size. 
Flow chart in Fig. 1 is used to solve the size of minimum 
divide-and-conquer units. Here,  represents the size of 
minimum divide-and-conquer units, the initial value is ; 

 represents the upper limit of the size of minimum 
divide-and-conquer units; when the size of minimum 
divide-and-conquer units is less than , no further 
division is performed;  represents the number of divisions. 

 
Figure 1. Flow chart to calculate the size of minimum 

divide-and-conquer units 
The above algorithm can divide  components into 

units of size  and . Suppose  represents the 
number of units of size  and  represents the number of 
units of size , they satisfy the following relationship: 

 
 

By solving these equations, the number of division 
steps in the divide-and-conquer algorithm can be obtained. 
Here, an  (  represents the number of 
division) matrix  is utilized to store every solution in the 
divide-and-conquer algorithm. The probability structure 
can firstly be solved with the minimum unit of division. 
The th row of matrix  represents the probability 
structure of  minimum divide-and-conquer units, each 
of which is a  vector, and the th element of 
the vector represents the probability that  components 
function in each minimum unit. If  is larger than the unit 

size  or , the probability that  ( ) 
components in the unit work is 0. The matrix  and 

 are shown in Fig. 2a and Fig. 2b. 

 
Figure 2a. Diagram of matrix  

 
Figure 2b. Diagram of matrix  

Note* in , 
represents the probability that  components work in 

the th divided unit after  divisions. 
The th row of matrix  has  vectors, each of 

which is derived from th row by solving Eq. (7). For 
example, the first vector in th row of the matrix  is 
derived from the first and second vectors in th row, 
and the second vector in th row is derived from the third 
and fourth vectors in th row, ..., the th vector 
in th row is derived from the th and th vectors 
in th row. The  is given as follows. 

 

where 
 means the probability that  components work 

in the th divided unit after  divisions, 

 means the probability that  components work in the 
th divided unit after  divisions, 

 means the probability that  
components work in the th divided unit after  
divisions. Flow chart of proposed algorithm in computing 
the probability structure is shown below. 

 
Figure 3. Flow chart of proposed algorithm 
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2.2 Algorithm for computing system structure 
A proposed new simulation method for survival signature 
also adopts the idea of divide-and-conquer. Sampling is 
difficult for large , thus, it is more practical to do the 
sampling in small groups, i.e., divided unit. As mentioned 
in Section 3.1, computing the probability of component 
working in subsystem  can be converted into the 
combination of computing two probabilistic structures 
containing  components assuming  is even, as shown 
in Eq. (7). For a sample with  component working in 
subsystem , if we divide the  once, there will be 

 cases, that is,  components working in 
the first divided part containing  components while 

 components working in the second divided part 
containing  components. If we continue to divide the 
first divided part containing  components with 

 components working into 2 subparts, there will 
be another  cases where  
components working in the first divided subpart containing 

 components and  components working in the 
second divided subpart containing  components. 
Therefore, in each Monte Carlo sampling, we only need to 
determine how many components working in each of the 
two subparts formed by each division, as shown in Fig. 4. 
A matrix  (Fig. 5) is used to store the number of working 
components in each partition unit of a sample, where  

 represents the number 
of components working in the th subsystem after  
divisions for one generated sample, 

. 

 
Figure 4. Flow chart of one generated -out-of-  sample

 
Figure 5. Diagram of matrix  of one generated sample 
Matrix  is generated from top to bottom,  

 and  are 
randomly sampled from  cases in which  
components working in the th unit after  divisions. 
However, the weight of each case is different, which is 

related to the number of working components  . The 
calculation formula is given as 

 

where  represents the th case weight 
,  represents the number of working 

components in the th unit after  divisions, 
 means the probability that  

components work in the th divided unit after  
divisions,  means the probability that 

 components work in the th divided unit 
after  divisions. So, the generation of matrix  is a 
weighted random sampling  process which is to 
randomly select  elements in a set  with  elements, 

 with a weight , and the probability of each 
element being selected is the ratio of the weight. Efraimidis 
[6],[7] proposed weighted random sampling algorithm to 
solve this problem, herein, the process of solving for 

 and 
 transforms into select a case from a set  with 
 cases, each case having a weight 

 
Each element in the probability structure matrix  

(Fig.2a) calculated by the divide and conquer algorithm 
represents probability that  components 
work in the divided part. Each item in Eq. (8) can be 
obtained from matrix  to avoid repeated calculation. 
Different from the bottom-up calculation process of the 
divide-and-conquer algorithm, this sampling method is 
top-down. By selecting the generation mode of each layer, 
the last generated samples of the bottom layer are 
combined into the final samples. Therefore, there will be 
no invalid samples. 

To calculate , it has to determine whether 
generated state vector corresponds to system working or 
failure. The binary decision diagram (BDD) is introduced 
here to obtain the system state. The BDD is a directed 
acyclic graph (DAG) based on the Shannon decomposition. 
BDD can be obtained by decision tree transformation. Each 
BDD structure contains two terminal nodes labelled either 
with 0, or with 1, and one root node representing the first 
node in the chosen order. Different decision tree 
component selection order will lead to different BDD 
structure complexity [8]. It is difficult to traverse all the 
failure modes of the graph structure or find the optimal 
order of BDD structure modelling components, but Hardy 
[9] proposed a method based on the decomposition of the 
graph structure to build a system BDD structure. After 
obtaining the system BDD structure, it is very convenient 
to obtain the working state of the system by inputting the 
working state of each component. The pseudocode of the 
simulation method combining WRS algorithm and BDD 
structure to compute  is shown below, where 

 represents the number of samples in which the 
system works out of  samples generated. The pseudocode 
of the simulation method combining WRS algorithm and 
BDD structure to compute  is shown below, 
where  represents the number of samples in which 
the system works out of  samples generated. 
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Algorithm: Compute  
Input: generated  samples with  components 
working in subsystem  BDD structure 
for system 
Output:  
1: Set ; 
2: For  = 1 to  do 
3: Put the generated  into BDD 
structure and get the terminal node ; 
4: If , +1, End-If  
5: End-For 
6:  

2.3 Illustrative example 
Firstly, a simple system shown in Fig. 6 is selected as an 
example study herein. It can be regarded as a subsystem  
separated from a complex system with  components. 
Components in the subsystem  are independent but 
nonidentical and the probability structure  
has to be determined. The effect of the size of the minimum 
divide and conquer unit on the computation time of the 
algorithm is analysed herein. Suppose , , 
the minimum divide and conquer unit size having 480, 240, 
120, 60, 30, 15, 7 and 8 is tested separately. Figure 7 shows 
the relationship between calculation time and the number 
of divisions in divide and conquer algorithm. It can be seen 
the minimum divide-and-conquer unit greatly influent the 
survival signature computation time. The calculation time 
of the divide-and-conquer algorithm after 7 times of 
division (about 0.044273 sec) is the least. The calculation 
time for 7 divisions (about 0.044273 sec) is about 2000 
times that for 1 division (about 108.954 sec). When the 
number of divisions , it takes about 0.000818 sec to 
calculate the minimum size of divide-and-conquer units, 
about 0.040147 sec to solve the solution for the minimum 
units, which shows that the main running time of the 
divide-and-conquer algorithm in calculation of probability 
structure is the conquering of the minimum divide-and-
conquer unit, rather than the process of division and 
regression. And when we perform 8 divisions and the size 
of the minimum divide-and-conquer unit is 3 and 4, the 
running time of the algorithm is 0.026962 sec, and the 
overall improvement efficiency is not high. Therefore, the 
upper limit of the minimum partition and conquer unit 

 could obtain better operation efficiency. 

 
Figure 6. Simple subsystem  with  components 

In order to prove the effectiveness of the algorithm, the 
divide and conquer algorithm is compared with the 
exhaustive algorithm. As mentioned in Section 2.1, there 
are  cases when  components working 
in a  components system with different probabilities. 
The exhaustive algorithm refers to iterating over all the 
cases and calculating the probability of each case, then 
adding them up. By increasing  or , the exhaustive 
algorithm leads to dramatic computations, for it will take 

long time to iterate all  cases. The comparison of 
calculation time between exhaustive algorithm and 
proposed algorithm for different working component  for 

 with number of divisions equals to 2 is shown in 
Fig. 8. For , the comparison of calculation time 
between exhaustive algorithm and proposed algorithm for 
different mk is shown in Fig. 9.  

 
Figure 7. Relationship between calculation time and the number 

of divisions in divide-and-conquer algorithm 

 
Figure 8. Comparison between exhaustive algorithm and divide 

and conquer algorithm in the calculation time for  
when the number of divisions  

 
Figure 9. Comparison between exhaustive algorithm and divide 

and conquer in calculation time for  
Then, the same type of series-parallel system in Fig. 6 

with  is used to compare the new simulation 
method and the crude Monte Carlo simulation method 
(sample all the state vector sets according to the failure 
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probability of each component, and then select the state 
vectors satisfying the work of  components in subsystem 

). Four groups of state vectors are tested, these are 40-out-
of-50 ( , ), 25-out-of-50, 90-out-of-100, 
50-out-of-100, 190-out-of-200 and 100-out-of-200 
samples. Tab. 1 shows the sampling completion time of the 
two sampling methods. As can be seen from Tab.1, the new 
simulation method greatly improves the calculation time 
compared with the crude Monte Carlo method. And with 
the increase of the total number of components  and the 
number of failure components, the crude Monte Carlo 
method will not be able to collect samples effectively. This 
is mainly because the crude Monte Carlo needs to judge 
whether each generated sample belongs to set , 
which will inevitably produce invalid samples that do not 
meet the conditions, leading to the reduction of sampling 
efficiency. If the reliability of components decreases or the 

 and  of the system increases, the number of effective 
samples decreases as the number of effective samples from 
Monte Carlo simulations is about . 
When  remains unchanged and  
decreases, the number of effective samples decreases. It 
takes about 12 seconds for the crude Monte Carlo method 
to generate 10,000 valid samples for a total of 180,000 
samples when , . For the new simulation 
method, the main work of the algorithm is to construct the 

 matrix of each sample, that is, to solve the weight of each 
case in each step of the weighted random sampling. 
Therefore, the running time of the algorithm is roughly 

, where  denotes the number of divisions and  
represents the number of working components in 
subsystem . 
Table 1. Comparison between new simulation method and crude 
Monte Carlo. 

Case Crude Monte Carlo  Proposed method 
,  - 3.057s 
,  11.456s 2.196s 

,  - 7.278s 
,  30.240s 3.590s 
,  - 14.185s 
,  - 7.705s 

Next, the new developed approach is tested for 
analysing components having time-varying reliability 
properties. It is assumed that the failure probability of each 
component follows the Gamma distribution over time as 
given in Eq. (9) [10]. Intervals are used to describe the 
imprecision in the failure time distribution, with 
distribution parameter  in [1.2,1.8] and distribution 
parameter  in [2.3,2.9]. 

 

where  and  are the shape parameter and size parameter 
for Gamma distribution,  is the Gamma function 
while . The state vector generated 
by the new simulation method is converted into the  
structure, and the survival signature values for different 
states are calculated and shown in Fig. 10. For a serial-
parallel system with   components, it is easy to estimate 
the survival signature of  components working under 

assumption as shown in Eq. (10). 
 

Instead of the BDD structure, the system functions of 
each state vector can be obtained more simply by 
determining whether each parallel component fails 
simultaneously. Figure 10 shows the variation of survival 
signature (Φ(45), Φ(40), Φ(35)) over time when each 
component is independently but not identically distributed 
and the corresponding value of survival signature under 

assumption (solid lines shown in Fig. 10, in  
condition, Φ(45)=0.8024, Φ(40)=0.3258, Φ(35)=0.04758). 
It can be found that survival signature is no longer a fixed 
value as components are not identically distributed, which 
leads to different failure modes. 

It should be realized the probability structure obtained 
by the divide and conquer algorithm is the analytical 
solution, and the system structure obtained by Algorithm 
is the simulation solution. In order to exclude the 
possibility that the difference in survival signature under 
the two conditions in Fig. 10 is due to the randomness of 
Monte Carlo sampling, three reliability calculation 
methods of the series-parallel system are compared.  
1. Analytical method ; 
2. Survival signature method : based on Eq. (3), the 
system structure is calculated under the assumption of , 
and the probability structure is calculated by the divide and 
conquer algorithm; 
3. Survival signature method : based on Eq. (3), the 
system structure is calculated by Algorithm, and the 
probability structure is calculated by the divide and 
conquer algorithm. 

Tab.2 shows the system reliability in each year 
calculated by each method. 

 
Figure 10. Survival signature calculated by new simulation 

method 
Table 2. System failure probability calculated by each method 
and calculation error. 

Time 
(year) 

   

0 1 1(0%) 1(0%) 
0.1 0.95605 0.95251(0.3703%) 0.95616(0.0115%) 
0.2 0.83188 0.8244(0.8992%) 0.83254(0.0793%) 
0.3 0.65969 0.65044(1.4022%) 0.66221(0.382%) 
0.4 0.47917 0.47037(1.8365%) 0.47921(0.00835%) 
0.5 0.32073 0.31369(2.195%) 0.3222(0.4583%) 
0.6 0.19904 0.19411(2.4769%) 0.19983(0.3969%) 
0.7 0.11521 0.11211(2.6907%) 0.11525(0.0347%) 
0.8 0.06254 0.06076(2.8462%) 0.06357(1.6469%) 
0.9 0.03201 0.03107(2.9366%) 0.03171(0.9372%) 
1.0 0.01552 0.01505(3.0284%) 0.01541(0.7088%) 
1.1 0.00716 0.00694(2.8571%) 0.00707(1.257%) 

 Φ(45)
 Φ(40)
 Φ(35)
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1.2 0.00315 0.00306(3.0075%) 0.00313(0.6349%) 
As can be seen from Tab. 2, the error obtained by 

method 2 is larger method 3. The results indicate that 
survival signature is no longer a fixed value in the case of 
independent but nonidentical components. Thus, the 
system structure calculated by method 2 is wrong. It can 
also be found that the reliability obtained by the new 
simulation method (method 3) is close to the analytical 
solution. This provides a solution for the reliability analysis 
of large complex systems when analytical solution is 
difficult to obtain. 

5. Analytical reliability for systems with dependent 
components 

5.1 Copula theory 
The multidimensional copula function 

 refers to the function that satisfies the 
following properties:  

(1) The domain of  is ;  
(2)  is grounded and -dimensional 

increasing;  
(3) For every , 

.  
Suppose  are random variables, 

 are continuous one-dimensional 
distribution functions. Let , , …, 

, and  is a multidimensional 
joint cumulative distribution function with cumulative 
marginal distribution function . 
Multidimensional distribution Sklar theorem [11] states 
that there exists a copula function  that 
joins  with , as 
shown in Eq. (11): 

 

The multidimensional Archimedean copula function is 
expressed as follows: 

 

where  is correlation parameter;  is the generator 
of Archimedean copula function;  is the pseudo-
inverse function of generator function. 

5.2 Proof of exchangeability under dependent component 
situation 
Suppose there are  components in subsystem , 

 represents the limit state function for 
component .  refers to component 

 failure, while  refers to component  working. 
Here, for systems with dependent components, it is defined 
that components of type  have the same marginal 
cumulative distribution function , where  
represents the failure probability for type  components. In 
the proving process,  can also be replaced by the 
time-varying failure distribution , which means the 
probability that component fails less than time . Let 

 be the multidimensional joint 
probability density distribution, and  be 
the multidimensional joint cumulative distribution function, 
which represents the probability that 

. If the correlation of components in the subsystem can 
be described by Archimedean copula function, then, 

 

 

where  and  satisfy in Eq. (15) and Eq. 
(16), 

 
 

where  and  is the inverse function of 
the marginal cumulative distribution function, the 
corresponding  of each component is the same in the 
same subsystem. Now consider two components  and  

 in the subsystem , then the 
probability while components  working, components  
failure and the probability while components  failure, 
components  working are shown in Eq. (17) and Eq. (18): 

 

 

The components in the same type have the same 
marginal cumulative distribution probability, so 

, and the generator function of the Archimedean 
copula is the same for each component, then it can be 
obtained that: 

 

Similarly, if  is replaced by the time-varying 
failure distribution , the exchangeability assumption 
could also be satisfied in Eq. (20): 
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In Eq. (19), when there are  components working in 
subsystem , the probability of the  possible cases are 
the same with each other. Hence, the probability structure 
that  components working in subsystem 

 can be calculated in the following formula: 

 

The above formula is no different from Eq. (4), except 
that the analytic expression of Bernoulli distribution is 
replaced by the Archimedean copula form. Therefore, we 
only need to compute the probability of one case in  
to obtain the probability structure. 

5.3 Calculation of probability structure 
In this part, a method for calculating 

 in Eq. (21) is 
introduced. When , according to 
the Sklar theorem, it can be converted to  and 
substituted into the Archimedean copula function, so the 
main work in this part is to calculate the probability when 

. Take computing in a 
three-component system as an example, components in the 
same type with the same marginal cumulative distribution 
probability  and  represents the 
multidimensional joint probability density distribution. 
The calculation diagram is shown in Fig.11. 

 
Figure 11. The probability model diagram for solving 

 
It can be found from Fig. 1 that 

 can be calculated in Eq. (22): 

 

The inclusion-exclusion principle [12] to calculate 
union set size is shown in Eq. (23): 

 

where  represents the subset ;  refers 
to the size of set. According to the exchangeability of 
components, the probability between any vector state with 
the same number of failure components is equal. Therefore, 
Eq. (22) can be calculated in the following form of Eq. (24): 

 

It can be obtained in Eq. (25)- (27) from Sklar theorem: 

 

 

 

Finally, for the three components with the same type, 
the calculation formula of  is in 
Eq. (28), each of which can be calculated by substituting 
corresponding  or 1 into the copula function. 

 

According to the principle of inclusion-exclusion, the 
probability structure is further extended to the subsystem 
with  components and the system containing  
types component. The corresponding probability structure 
for  and  are shown in Eq. 
(29): 

 

5.4 Case study 
A bridge system shown in Fig. 12 is used here to 

compare the reliability analysis for simulation method and 
proposed analytical method. Suppose component 1, 2 and 
3 are in the same type 1 and component 4, 5 and 6 are in 
the same type 2. Here the failure time distribution is used 
as marginal cumulative distribution to perform reliability 
analysis. It is also assumed that components in the same 
type follow the same marginal exponential failure 
distribution. Two different Clayton copula functions are 
used to describe the internal component dependencies of 
each subsystem, and a third Clayton copula function is used 
to describe the dependencies between subsystems. The 
parameters are shown in Tab.3. The analytical system 
reliability proposed for system with dependent components 
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is compared with the results by simulation algorithm in [13] 
with 10000 samples as shown in Fig. 12. 
Table 3. Failure rate of marginal exponential distributions 
for each type and parameters in copula. 

Parameter Definition Value 
 Failure rate of component type 1 in 

exponential distribution 
1 

 Failure rate of component type 1 in 
exponential distribution 

1.5 

 Clayton copula parameter on type 1 
component 

1.5 

 Clayton copula parameter on type 2 
component 

1 

 Clayton copula parameter join type 1 
and type 2 copula functions 

0.5 

 
Figure 12. Comparison between proposed analytical method 

and simulation method 
It can be seen from Fig. 11 that the analytical method of 

reliability for the related systems proposed in this paper is 
consistent with the simulation method. For the bridge 
structure in Fig. 10, with 10,000 simulation samples, the 
maximum error of the two calculation results in the first 1.5 
years is 2.9939%. When the time t increases, the reliability 
decreases and the error between the simulation method and 
the analytical method increases. This is because when the 
reliability becomes smaller, the sampling efficiency of 
Monte Carlo simulation becomes lower. For example, 
when t=1.3 and the sampling number is 100000 rather than 
10000, the reliability calculated by simulation method is 
0.91440 with error 1.1472%. However, when the sample 
number is 10000, the running time of the simulation 
method for 0-6 years and the step length of 0.1 years is 
2.786s, and when the sample number is 100000, the 
calculation time is 26.408s, while the proposed analytical 
method only needs 1.075s. 

6. Conclusion 
In this paper, a reliability approach is developed to 

analyse systems with independent but not identical 
components and an analytical reliability analysis method is 
proposed for systems with dependent components. In the 
independent but non identical situation, the divide-and-
conquer algorithm is proposed to calculate the probability 
structure of large and complex systems. A combination of 
simulation method, divide and conquer algorithm and 
BDD structure are employed to derive the corresponding 
system equations of various state vectors and calculate the 
structure function values. The results showed the divide-
and-conquer algorithm is more efficient in calculating 
probability structure compared to traditional exhaustive 
algorithm, especially when the total number of components 

is 1000, the calculation time can be shortened about 1000 
times compared with the traditional method. In system 
structure calculation, the new simulation method has 
higher sampling efficiency, especially for the system with 
small failure probability and large number of components. 
In dependent components situation, the combination of 
copula theory and survival signature solve the 
exchangeability assumption problem. The inclusion-
exclusion-principle based method could calculate 
probability structure effectively and results show that the 
proposed method is correct compared with simulation 
method. 
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