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Abstract  8 

Due to complexity and dynamics of construction work, resource, and cash flows, poor management of 9 

them usually leads to time and cost overruns, bankruptcy, even project failure. Existing approaches in 10 

construction failed to achieve optimal control of resource flow in a dynamic environment with uncertainty. 11 

Therefore, this paper introduces a model and method to adaptive control the resource flows to optimize 12 

the work and cash flows of construction projects. First, a mathematical model based on a partially 13 

observable Markov decision process is established to formulate the complex interactions of construction 14 

work, resource, and cash flows as well as uncertainty and variability of diverse influence factors. 15 

Meanwhile, to efficiently find the optimal solutions, a deep reinforcement learning (DRL) based method 16 

is introduced to realize the continuous adaptive optimal control of labor and material flows, thereby 17 

optimizing the work and cash flows. To assist the training process of DRL, a simulator based on discrete 18 

event simulation is also developed to mimic the dynamic features and external environments of a project. 19 

Experiments in simulated scenarios illustrate that our method outperforms the vanilla empirical method 20 

and genetic algorithm, possesses remarkable capability in diverse projects and external environments, 21 

and a hybrid agent of DRL and empirical method leads to the best result. This papers contributes to 22 

adaptive control and optimization of coupled work, resource, and cash flows, and may serve as a step 23 

stone for adopting DRL technology in construction project management. 24 
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 28 

1. Introduction 29 

Since the most important project metrics relate to the work and cash flows, to optimize these two 30 

flows is usually the objective of construction project management. The work flow represents the 31 

progressions of diverse trades (a trade represents the work content for a specified type of workers) [1], 32 

whose metrics include delays on trades and durations. The cash flow comprises cash inflow (e.g., 33 

receiving milestone payment from clients) and outflow (e.g., payment for staff wages and materials 34 

ordering) [2], whose metrics include net present value (NPV) and costs. 35 

Labor and material flows are two of the most essential resource flows, and critical to construction 36 

project. Poor management on labor and material flows causes unstable work flows and negative cash 37 

flows, further leads to delays [3] and wastes [4] in construction project, eventually time or/and cost 38 

overrun [5]. It is necessary to support project managers with optimization approaches for resource-flow-39 

control. 40 



However, existing optimization approaches in project management failed to address the integrated 1 

control of resource flow. First, existing optimization models limited the scope of their decision variables 2 

to avoid modelling the extremely complex and uncertain environments. Most existing models are based 3 

on transformation or flow view [6]. The decision variables of most transformation-based models are the 4 

start times of activities, whereas the influence of resource flows is represented by constraints; most flow-5 

based models [7] failed to comprehensively consider all resource flows, i.e., they considered only labor 6 

or material flow. 7 

Second, even if the desired model is proposed, it is difficult to solve this extremely complex and 8 

uncertain model with the conventional methods. The high dimensionality and large intervals of decision 9 

variables reflect its complexity; this is difficult to handle using the evolutionary algorithm (EA) [8] or 10 

traditional reinforcement learning (RL) [9] method. In contrast, existing approaches such as rule-based 11 

methods cannot address the uncertainty, and therefore, it is difficult for them to perform well under 12 

multiple stochastic variables. 13 

Therefore, this study proposed an adaptive and continuous resource-flow control model to optimize 14 

the work and cash flows of construction projects. The decision variables in the model include the numbers 15 

of allocated work hours and quantities of ordered materials. Our model outperforms the existing models 16 

in considering the complexity and uncertainty. Regarding the complexity, it considers the various factors 17 

which affect the work or cash flow. For example, factors such as the quantity of the work content, 18 

precedence of activities, productivity of workers, and material availability affect the work flow [10], 19 

whereas staff wages, quantity of material ordering, payment method, etc. influence the cash flow of the 20 

project [11]. Regarding the uncertainty, our model considers the variability in the influencing factors of 21 

the work or cash flow [12]. For example, the variability of weather condition and workforce motivation 22 

[13] causes the uncertainty of work flow, and the variability of the payment schedule and unit price of 23 

resources causes the uncertainty of cash flow [14]. 24 

Moreover, we propose the proximal policy optimization (PPO) [15], an online deep reinforcement 25 

learning (DRL) method [16], to solve our model. The extraordinary capabilities of DRL algorithms in 26 

handling continuous adaptive optimal control problems in complex and dynamic environments has been 27 

proven [17]; DRL-based agents make decisions based on their observations of state gradually, whereas 28 

conventional methods like EA output the whole decision trajectory based on the initial status of the 29 

project. DRL methods have an additional advantage, that is the flexibility of DRL algorithms allow us to 30 

propose hybrid agents, and such agents may lead to better result. 31 

The remainder of this paper is organized as follows. In Section 2, we review the existing 32 

mathematical models and compare them with our model. Section 3 introduces necessary knowledge on 33 

the features of the DRL algorithms. Section 4 presents the model formulation and Section 5 describes the 34 

methodology to find the optimal solution. In Section 6, we evaluate the performance of our methodology 35 

with numerical experiments; finally, this study is concluded in Section 7. More details on our model are 36 

provided in Appendices A, B, and C. 37 

2. Literature review on existing mathematical models 38 

Transformation and flow views are the two main views in time-cost optimization models on project 39 

management [6]. The transformation-based models represent construction projects as dependencies 40 

between activities; they consider the optimization of the duration and cost of the project as schedule 41 

problems, i.e., the decision variables are start times of all activities. Flow-based models not only divide 42 

a construction project into activities; however, they assume that the operation of an activity requires 43 

specific flows (i.e., labor and material flows) to be ready [7]. These models optimize the total duration 44 

and cost by controlling and leveling the flows. Fig. 1 illustrates the differences between these two views 45 



with an example. 1 

 2 

Fig. 1. Transformation versus flow views 3 

The rest of this section reviews the transformation and flow-based optimization models in Sections 4 

2.1 and 2.2, respectively. Models integrating both of these two views are introduced in Section 2.3, and 5 

Section 2.4 compares the existing models with our model. 6 

2.1. Transformation-based models 7 

The typical transformation-based optimization models are resource-constrained project-scheduling 8 

problems (RCPSPs) [18]. The basic RCPSP model minimize the duration and/or cost of the project by 9 

arranging activities with precedence relations, and they assume that each activity need a fixed duration 10 

and resources usage. These resources are usually renewable resources, i.e., crews and machines; they 11 

have fixed capabilities during the project. 12 

Researchers have proposed enhanced versions based on the basic model. Wang et al. [19] proposed 13 

a multimode RCPSP; a mode indicates a specific operation of an activity and each mode corresponds to 14 

a specific cost and duration of an activity. Liu and Wang [20] and He et al. [21] enhanced the multimode 15 

RCPSP. The former study considered cash flows as a constraint whereas the basic model assumed an 16 

infinite startup budget; the latter study planed the payment schedule under the constraint of cash flow. 17 

However, both of [20] and [21] ignored the objective of minimizing the duration. Tirkolaee et al. [22] 18 

integrated the advantages of these three studies. 19 

Chakrabortty et al. [23] and Sallam et al. [24] considered the uncertainty of the activity duration by 20 

assuming that the durations obey the probability distributions; the latter study guaranteed the robustness 21 

of the outputted schedule by limiting the probability of activity delays. Prayogo et al. [25] considered the 22 

minimization of the quantities of necessary renewable resources as the objective of scheduling, whereas 23 

Ma et al. [26] considered the quantities of available crews and machines as decision variables. Wang et 24 

al. [27] considered the transfer costs of resource allocation; Alcaraz et al. [28] assumed the resource costs 25 

are time-dependent. 26 

2.2. Flow-based models 27 

Flow-based models optimize time and cost by controlling the labor, material, and space flows. The 28 

labor-flow-control models schedule work and the idle time of workers; its basic model is look-ahead 29 

planning (LAP) [29]. The material-flow-control models plan the ordering quantities or the baseline of 30 

inventory stock, and its basic models include the economic-order quantity [30] and construction logistics 31 

planning (CLP) [31]. The basic models of space-flow-control include location-based management system 32 

[32] and Takt time planning (TTP) [33]. 33 

Automatic optimization methodologies and enhanced versions of these models are proposed in 34 

recent years. For labor-flow-control models, Al-Rawi and Mukherjee [34] and Soman and Molina-Solana 35 



[35] proposed automatic methods for generating the outputs of LAP. Rahmanniyay and Yu [36] 1 

considered multiskilled workers, whereas the basic LAP assumed that each staff must work for a specific 2 

trade. For material-flow-control models, Son et al. [37] proposed a simulation-based automatic 3 

optimization method for CLP problems. Jaśkowski et al. [38] considered the variability of the unit price 4 

of materials and multiple deliver channels, and Kulkarni and Halder [39] treated inventorying leveling 5 

and avoiding material shortage as objectives. They considered the uncertainty of the activity duration, 6 

and Lu et al. [40] proposed a simulation-based optimization model to determine the level of stock 7 

baseline under specific allocation policies. For space-flow-control, Jabbari et al. [41] proposed a model 8 

to level the workload of work zones for TTP; the workload leveling results in a minimum Takt time, 9 

which reduces the duration of the project. 10 

2.3. Integrated models 11 

Some studies considered integrated decisions of project scheduling and flow controlling. Hazır and 12 

Schmidt [42] used a schedule model for determining the modes and end times of activities for time 13 

optimization; they used a control model to plan work-hour-distribution of each activity to save money. 14 

Hosseinian et al. [43] proposed a model for handling both schedule and human resource allocation 15 

problems; they assumed the inexperienced workers can learn from the skilled ones while working 16 

together. Almatroushi et al. [44] proposed a hybrid model for scheduling the noncritical activities and 17 

order-consumable resources; however, the schedule of critical activities remains fixed. 18 

2.4. Summary 19 

The proposed models do not comprehensively consider the complexity and uncertainty of 20 

construction projects. The managers need to create a large amount of decisions for optimizing the work 21 

and cash flows to account for complexity. However, the proposed models consider only the limited 22 

number of decision variables; many important influencing factors need to be inputted, or disregarded. 23 

Table 1 indicates that the transformation-based models only determine activity schedules without 24 

planning the usages of workforce and materials; the flow-based and integrated models focus only on 25 

single-flow control. Almost half of the existing models have a single objective. The other half of the 26 

models aim to achieve time-cost trade-off optimization; they optimize costs without considering the 27 

possibility of broken cash flow.  28 

Table 1. Decision variables, constraints, and objectives of each optimization model 29 

Study 

Decision variable or constraint Objective 

Activity 

schedule 

Payment 

schedule 

Crew 

number 

Work 

time 

Material 

ordering 

Space 

usage 
Time Cost 

Transformation-

based model 

[19] ★  ▲    〇 〇 

[20] ★ ★ ▲     〇 

[21] ★ ★ ▲     〇 

[22] ★ ★ ▲    〇 〇 

[23] ★  ▲    〇  

[24] ★  ▲    〇  

[25] ★  ★      

[26] ★  ★    〇 〇 

[27] ★  ▲    〇 〇 

[28] ★  ▲    〇  

Integrated 

model 

[42] ★  ▲ ★   〇 〇 

[43] ★  ▲ ★   〇 〇 

[44] ▲/★  ▲  ★   〇 



Flow-based 

model 

[34] ★  ▲ ★    〇 

[35] ★  ▲ ★   〇 〇 

[36] ▲ ▲ ▲ ★   〇 〇 

[37] ▲ ▲   ★   〇 

[38] ▲ ▲   ★   〇 

[39] ★   ★ ★  〇 〇 

[40] ★    ★  〇 〇 

[41] ★  ▲   ★ 〇  

Ours ★ ★ ▲ ★ ★ ▲ 〇 〇 

* ★ represent decision variables or depend on decision variables, ▲ represent constraints 1 

There are diverse sources of uncertainty in actual construction projects. However, as indicated in 2 

Table 2, nearly half of the existing models do not consider uncertainty at all, and many studies only 3 

assume that activity durations are random numbers. Few studies consider uncertainty from other sources 4 

such as human resource and material; the modelling of the internal mechanism of uncertainty remains 5 

rare. Therefore, we manage to propose a novel optimization model that can outperform the existing 6 

models when considering the complexity and uncertainty. 7 

Table 2. Uncertainty in each optimization model 8 

Study 

Time Human resource Material External Factor 

Activity 

duration 

Lead 

times 

Unit 

cost 
Efficiency 

Unit 

Cost 
Waste Weather Market 

Transformation-

based model 

[19] ▲  ▲ ▲     

[20] ▲  ▲      

[21] ▲  ▲      

[22] ▲  ▲      

[23] ★        

[24] ★        

[25] ▲        

[26] ▲  ▲      

[27] ★ ▲       

[28] ▲  ★      

Integrated 

model 

[42] ▲ ▲ ★ ▲     

[43] ★  ★ ★     

[44] ▲  ▲ ▲ ▲ ▲   

Flow-based 

model 

[34] ★  ▲ ▲     

[35] ★  ▲ ▲     

[36] ★  ▲ ▲     

[37] ▲ ▲   ★   ▲ 

[38] ▲ ▲   ★ ▲  ★ 

[39] ★ ★   ▲ ★   

[40] ★ ▲   ▲    

[41] ▲   ▲     

Ours ★ ▲/★ ★ ★ ★ ★ ★ ★ 

* ★ represent random numbers or depend on random numbers, ▲ represent deterministic 9 

3. Background on deep reinforcement learning 10 

Project management with flow-based models is an optimal control problem proposed to design a 11 



resource-flow control agent for optimizing work and cash flows. Recent studies in DRL technology have 1 

proven its capability for solving optimal control problems. In the term DRL, “deep” represents agents 2 

that are on the basis of deep neural networks (DNN); “reinforcement learning” (RL) represents agents 3 

that learn optimal strategies by trial and error in specific environments [16]. The control problems must 4 

be formulated as a MDP to adopt DRL algorithms [16], e.g., a partially observable Markov decision 5 

process (POMDP) [45], which is not difficult for flow-based models. 6 

The rest of this section is organized as follows. Section 3.1 introduces the POMDP, and Section 3.2 7 

compares EA, RL, and DRL, and it illustrates the advantages of online DRL. Section 3.3 shows the 8 

flexibility of the DRL algorithms. In Section 3.4, we describe the training and validation of the agents.  9 

3.1. Partially observable Markov decision process 10 

Fig. 2 shows that the POMDP models the process wherein an agent changes the state of an 11 

environment by taking actions. The agent takes action based on its observation. 12 

 actiont = Policy(observationt), (1) 13 

where Policy() represents the logic of the agent’s decision making. The action changes the state of the 14 

environment. 15 

 statet+1 = Transition(statet, actiont), (2) 16 

where Transition() represents the mechanism of the environment. A new observation is obtained based 17 

on the historical record of observable state parameters. 18 

 observationt+1 = Observe(SRecordt+1), (3) 19 

where SRecordt+1 = {state1, state2, ……, statet+1}. The reward represents the quantitative evaluation of 20 

the state change, and 21 

 rt = Reward(statet+1, statet, actiont), (4) 22 

where rt is known to the agent in model-based RL, while it is unknown in the model-free RL. 23 

 24 

Fig. 2. Basic framework for partially observable Markov decision process 25 

If the initial state is given,  26 

 statet = init_state. (5) 27 

Therefore, the trajectories of observation, action, state, and reward can be calculated by repeatedly calling 28 

Eq. (3) → Eq. (1) → Eq. (2) → Eq. (4). 29 

The objective of POMDP is to maximize the cumulative reward for the entire process by finding 30 

the optimal policy function of the agent.  31 

 1

Policy () : max ;

   . . (2),  (4),  (5)

T

t

t

r

s t



=

= 
 (6) 32 

3.2. Comparison among EA, RL, and DRL 33 

The EA and RL methods are adopted to solve the optimization models reviewed in Section 2. For 34 



example, a symbiotic organisms search [46], a EA method, was adopted in [26] to solve the optimal 1 

activity schedule and crew numbers. In [24], the authors used a RL-EA hybrid methods to solve RCPSPs; 2 

two EA methods optimized the activity schedule and Q-learning [9], an RL algorithm, was determined 3 

in which the EA method was used in a specific problem. In [35], the authors determined the workforce 4 

allocation on each day, and Q-learning was used. In [40], the authors adopted genetic algorithm (GA) [8], 5 

which is a EA method, to solve optimal material ordering. 6 

However, our POMDP-based model has considerably more decision variables compared to the 7 

optimization models in these studies. EA, RL, and even offline DRL cannot handle the complexity. The 8 

decision variables of a POMDP model represent the action trajectory, {action1, …, actiont, …, actionT}. 9 

The EA methods directly solve the optimal trajectory, whereas RL and DRL divide the problem into 10 

similar sub-problems; they output each actiont based on observationt. Assume that the numbers of 11 

possible time steps, observations, and actions are T, M and N, respectively. The EA methods can handle 12 

this optimization problem when all of them are small; the RL algorithms, when T is large but M and N 13 

are small; the offline DRL algorithms, when T, M is large but N is small; and the online DRL algorithms, 14 

when all of them are large. 15 

EA methods like GA convert the action trajectory to a binary chromosome code whose length is T 16 

∙ log2N; the convergence becomes difficult when the chromosome code is extremely long. RL algorithms 17 

like Q-learning need to build a Q-table, whose element at the mth row and nth column represents the 18 

expected total cumulative reward for taking the nth action under the mth observation; it is almost 19 

impossible to update the Q-table if M or N is very large. 20 

The DRL comprises offline and online DRL. Deep Q-learning [47] is an offline DRL method whose 21 

architecture of the policy function is illustrated in Fig. 3(a). A normalization module first converts 22 

observationt to ot; the DNN(s) map ot to qt, whose nth element (qn
t) represents the expected total 23 

cumulative reward for taking the nth action under current observation. A SoftMax function converts qt to 24 

{p1
t, p2

t, ……, pN
t}, a discrete probability distribution, which is used to sample at. Finally, a 25 

denormalization module converts at to actiont. The size of the output layer of the DNN(s) is N; the 26 

convergence is difficult if N is very large. 27 

The PPO is an online DRL algorithm, whose architecture of the policy function is shown in Fig. 28 

3(b). The outputs of the DNN(s) are vt and meana
t instead of the Q-values; vt reflects the evaluation of 29 

the agent of total cumulative reward under observationt; meana
t is used to sample at according to the 30 

Gaussian distribution N(meana
t, exp(logstda)). The recommended action is determined after sampling 31 

and denormalization. 32 
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Fig. 3. Architecture of the policy function when (a) offline and (b) online DRL algorithms are used 2 

3.3. Flexibility of DRL algorithms 3 

A DRL-based agent can adopt multiple DNNs to perform part of actions or cooperate with rule-4 

based methods; such strategies can lead to better results. Oroojlooyjadid et al. [48] simulated the beer 5 

supply chain and trained four DNNs with deep Q-learning, each of which corresponds to an individual 6 

decision maker in the supply chain. Any trained DNN can cooperate with others or ruler-based policies 7 

and perform well. Chen et al. [49] investigated the optimal energy management policy of a building 8 

cluster, and they evaluated different approaches using CityLearn [50] and observed that an approach 9 

combining the DRL and rule-based policies performed the best. 10 

3.4. Training and validating DRL 11 

Unlike deep learning, which collects training data from the real world, the DRL usually train agents 12 

with data generated by simulators. The DRL algorithms were first adopted in abstract strategy games 13 

such as Go [51]; then, they were used to play computer and video games such as StarCraft 2 [52]. All of 14 

them are problems in the virtual world. Although the DRL was used to solve real-world problems such 15 

as robot navigation [53], the training in the real world is rare because of the cost and potential risk of trial 16 

and error. Many simulation platforms [54] have been proposed to support agent training; however, there 17 

are more or less bias between the simulated and real environments, which is called the reality gap. Some 18 

researchers attempted to propose approaches to narrow the reality gap [55]; more developers attempt to 19 

let people believe that the reality gaps of their simulators are acceptable by making the software or even 20 

the technical details available for the potential users. 21 

Validating is easier than training in the real world; however, building a testbed is expensive, and the 22 

potential risk still existed. The simulated scenarios are considered by researchers to evaluate the 23 

capabilities of their DRL agents. In few research studies, the authors designed simulated task scenarios 24 

by themselves; then, they selected non-DRL-based approaches as baselines. Hu et al. [56] developed 25 

DRL-based agents to control unmanned aerial vehicles; they designed virtual tasks to compare the 26 

proposed DRL and dynamic programming approaches. Further, many benchmark libraries were built to 27 

support the validation; each library includes simulated scenarios for a specific type of task. For example, 28 

AI2-THOR [57] is used for visual-based indoor robot navigation. 29 

4. Mathematical model for adaptive resource-flow control 30 



We formulate the adaptive resource-flow control problem in a construction project as a POMDP. 1 

Section 4.1 defines this engineering problem, explains what each component of the POMDP represents 2 

in the problem, and discusses the complexity and uncertainty of our model. Sections 4.2–4.7 describe the 3 

formulation of the components of the POMDP in detail, respectively. 4 

4.1. Map the engineering problem to the POMDP 5 

4.1.1. Problem definition 6 

The aim of the adaptive resource-flow control problem is to determine the work-hour allocation and 7 

material ordering for each day; the decision variables are thus WH and B, which are sequences of 8 

allocated work hours and brought materials, respectively. The basic goal is to avoid the project’s failure 9 

caused by the break in cash flow or delay in work flow; the advanced goal is to maximize the NPV and 10 

minimize the duration of the project, respectively. The objective can be represented by  11 

 Maximize: f (T, Ca, A),  (7) 12 

where T, Ca, and A represent sequences corresponding to time, holding cash, and progress. 13 

The controlling is constrained by the laws of nature and construction project, and this can be briefly 14 

represented by Eqs. (8)–(15). 15 

      g1 (T, A) = 0,  (8) 16 

which means the duration of projects depends on the progress.  17 

 g2 (Ca, A, WH, B, Pr) = 0, (9) 18 

where Pr represents the sequence corresponding to the material price. The cash inflow depends on the 19 

progress, whereas the cash outflow depends on work hours allocated and materials bought. 20 

 g3 (E, WH, We) = 0,  (10) 21 

where E and We represent the sequences corresponding to productivity of the worker and the weather. 22 

Fatigue and bad weather conditions can reduce the productivity. 23 

  g4 (A, WH, E, S) = 0,  (11) 24 

where S represents the sequence corresponding to the material stock. The update of the progress is based 25 

on the critical flow theory [58]; the labor, material, and precedence flows can be considered the critical 26 

flow.  27 

 g5 (S, A, B) = 0.  (12) 28 

Thus, the consumption of material depends on the progress, and the replenishment of material depends 29 

on the bought material. 30 

 Ca ≥ g6 (WH, B, Pr), (13) 31 

which implies holding enough money to pay labor and material costs. 32 

 4 ≤ WH ≤ 12, (14) 33 

which implies the work hours of the crews are more than 4 and less than 12 on each day. 34 

 0 ≤ B ≤ Bmax, (15) 35 

which implies the quantity of material purchased has an upper limit. The upper limit usually is the 36 

maximum storage capacity. 37 

4.1.2. Assumptions and limitations of our model 38 

Diverse sorts of construction project obey the constraints described in Section 4.1.1, but these 39 

constraints are expressed in different mathematical form for different sort of project. In order to clearly 40 

define the mathematical expression of our model, we consider the following four preliminary 41 

assumptions: 42 

A.1. The project’s goal is constructing a multistory building, and each floor of this building has the 43 

same area and construction space zoning; the area of the zones is the same. 44 



A.2. The zones of each floor are numbered, and they must be constructed in the order of their 1 

numbers. 2 

A.3. There are the following three types of onsite activities: rebar cage installation, formwork 3 

installation, and pouring concrete; three types of materials and workers, i.e., rebar/formwork/concrete 4 

(workers), correspond to these types of activities, respectively. 5 

A.4. The precedence of construction activities is rebar cage installation → formwork installation → 6 

pouring concrete; formwork installation or pouring concrete can only be performed in the zones where 7 

the corresponding prior activity has been completed, and rebar cage installation can only be performed 8 

in zones whose downstairs zones were completed (concrete has been completed poured). 9 

These assumptions determine the forms of constraints and parameters. For example, A.3 implies 10 

that the decision parameters, B and WH, correspond to three types of material and workers, and A.1, A.2 11 

and A.4 detail the influence of the precedence flow in Eq. (11). However, they also limit the scope of our 12 

model, which only apply to a specified sort of project, i.e., multistory reinforced concrete buildings. 13 

Further, our model does not address the influence of construction machine/equipment. 14 

4.1.3. Representations of the components of POMDP 15 

Formulating the problem as a POMDP is a prerequisite for solving it with a DRL algorithm. Basic 16 

components of a POMDP include action, state, transition, observation, policy, and reward, as indicated 17 

in Section 3.1. 18 

Although decision variables in Eq. (6) are internal parameters of the policy function, the actions are 19 

outputs of the policy function. The actions represent decisions to control the labor and material flows, 20 

i.e., WH and B, which are detailed in Section 4.2. The states represent the status of flows in the project 21 

and external environment, e.g., Ca, A, and Pr, which are detailed in Section 4.3. The transition function 22 

mimics the laws of nature and the construction project; this is described in Section 4.4. This function 23 

comprises the cash, labor, work and material flow modules that correspond to Eqs. (9)–(12), respectively. 24 

The observation function mimics human managers collecting necessary information from historical 25 

record of the states, which is introduced in Section 4.5. The policy function mimics human managers 26 

taking decisions based on the observations; this is introduced in Section 4.6. The rewards reflect the 27 

objectives, i.e., Eq. (7), which is detailed in Section 4.7. 28 

4.1.4. Complexity and uncertainty of the problem 29 

Our model outperforms existing models in considering the complexity and uncertainty of 30 

construction projects. The complexity is reflected by actions and transition functions. For the actions, our 31 

model can handle three types of workers and materials simultaneously; all these actions are in large 32 

intervals. For comparison, study [35] determined only the workforce allocation, and their decision 33 

variables are binaries, each of which represent whether each type of workers work on each day. In [40], 34 

the authors proposed a model whose decision variables correspond to the ordering of only one type of 35 

materials. The transition function considers complex interactions among flows shown in Fig. 4 and Eqs. 36 

(9)–(12). For example, Eq. (9) reflects the cash flow is influenced by work, labor, material, and price 37 

flows.  38 



 1 

Fig. 4. Interactions among influencing factors 2 

The uncertainty is reflected by the transition function, and it considers the uncertainty from time and 3 

cost incurred by modelling the deviations of their underlying factors. The activity duration is affected by 4 

the productivity of workers, and it is affected by the weather; the material cost is affected by the unit 5 

price that depends on the market. The variability of the weather and the market are modelled as random 6 

processes. 7 

4.2. Actions 8 

In our model, the trajectory {action1, …, actiont, …, actionT} represents the decisions to control 9 

the labor and material flows. Here, actiont represents the work-hour allocation and material ordering 10 

based on the tth day, whose parameters are defined in Table 3. 11 

Table 3. Definitions of decision variables (actiont) 12 

Parameter Definition Flow Interval Unit 

WHt 

RbWHt Work hours for rebar workers 

Labor [4,12] hour FwWHt Work hours for formwork workers 

CcWHt Work hours for concrete workers 

Bt 

RbBt Quantity of rebars bought 

Material 

[0, 500] 0.1 tons 

FwBt Quantity of formwork bought [0, 2000] square meter 

CcBt Quantity of concrete bought [0, 300] cubic meter 

4.3. State 13 

The state in our model reflects the status of the work, cash, labor, material, and external flows. The 14 

parameters of statet are summarized in Table 4. The parameters that correspond to the labor flow are 15 

unobservable; the others are observable state parameters. As described in Eq. (5), the state1 should be 16 

given, and this represents the status at the beginning of the project. The initial values of all state 17 

parameters are listed in Table 4, wherein InitCa and SDate are the input parameters. InitCa represents the 18 

amount of start-up cash for the project and SDate represents the start date of the project in this calendar 19 

year; modules in the transition function can calculate the initial price and weather states according to 20 

SDate. 21 

Table 4. Definitions of state parameters (statet)  22 

 Parameter Definition Flow Initial value 

At 
RbAt Total area where rebar cages are installed 

Work 
0 

FwAt Total area where formworks are installed 0 



CcAt Total area where concrete is poured 0 

Cat Amount of holding cash 

Cash 

InitCa 

ICat Amount of incoming cash 0 

LWSat Cumulative amount of last week’s salary 0 

EnEt Productivity reduction coefficient caused by bad weather  

Labor 

1 

FaIt 

FaRbIt Long-term fatigue index for rebar workers 0 

FaFwIt Long-term fatigue index for formwork workers 0 

FaCcIt Long-term fatigue index for concrete workers 0 

St 

RbSt Quantity of rebars stock 

Material 

0 

FwSt Quantity of formworks stock 0 

CcSt Quantity of concrete stock 0 

FwUt Quantity of formworks in use 0 

Prt 

RbPrt Unit price of rebar 

External 
Correspond 

to SDate 

FwPrt Unit price of formwork 

CcPrt Unit price of concrete 

Tpt Temperature 

Rft Rainfall 

Wst Wind speed 

4.4. Transition 1 

The transition function, Eq. (2), defines the update mechanism of statet, and this contains modules 2 

that correspond to work, cash, labor, material, and external flows, respectively. The remainder of this 3 

subsection discusses the modules of the transition function; the corresponding model parameters are 4 

defined in Table 5. 5 

Table 5. Definitions of model parameters 6 

Parameter Definition  

TF Number of floors in the building 

Basic project 

information 

pFZ Number of construction zones on a floor 

pZA Area of construction zone 

MaxT Maximum project duration 

pFCa Amount of milestone payment for each floor completed 

Relate to the 

cash flow 

IR Daily interest rate to hold cash 

pHSa 

pRbHSa Hourly salary for the normal working hours of rebar workers 

pFwHSa Hourly salary for the normal working hours of formwork workers 

pCcHSa Hourly salary for the normal working hours of concrete workers 

OWSaR Extra percentage of hourly salary for overtime work 

pIMCa Daily fee for material inventory management 

DcB 

DcRbB Quantity of rebars to be bought to avail the minimum discount 

DcFwB Quantity of formworks to be bought to avail the minimum discount 

DcCcB Quantity of concrete to be bought to avail the minimum discount 

MinDcR Minimum discount to buy materials 

W 

RbW Number of rebar workers 

Relate to the 

labor flow 

FwW Number of formwork workers 

CcW Number of concrete workers 

NAbR Normal absence ratio of workers 

MaxS 
MaxRbS Maximum storage capacity of rebars 

Relate to the 

material flow 
MaxFwS Maximum storage capacity of formworks 

FwRcLR Average loss ratio of recycling the formworks 



pWH2A 

pRbWH2A Average area that a rebar worker can complete per normal work hour 

Relate to the 

work flow 

pFwWH2A Average area that a formwork worker can complete per normal work hour 

pCcWH2A Average area that a concrete worker can complete per normal work hour 

pS2A 

pRbS2A Average area that a unit of rebar can complete 

pFwS2A Average area that a unit of formwork can complete 

pCcS2A Average area that a unit of concrete can complete 

4.4.1. Cash-flow module 1 

This module focuses on the update of the cash flow, and this consists of inflow and outflow. 2 
 

1t t t tCa Ca ICa OCa+ = + − . (16) 3 

The inflow comprises a milestone payment from the client and interest from holding money; 4 

milestone payments are payments at event occurrences [59], and the manager applies to the client for a 5 

fixed payment after a floor is completed; the lead time is 2–4 days. 6 

 1
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, (17) 7 

where PayDays represents the dates when the milestone payment was received. 8 

The outflow comprises a payment for the salaries of the workers and the cost of material ordering 9 

and storage. The payments for salaries of the workers are progress payments [59]; the workers receive 10 

their salaries once a week until the project is completed, and the amount of a payment depends on last 11 

week’s working hours. The payments for the material ordering are lump-sum payments [59], and the 12 

entire payment is paid while ordering. 13 
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where BPat represents today’s payment for material ordering. BPat depends on the quantities of material 15 

ordering, unit price, and discount ratio. 16 
 

t t t tBPa DcR Pr B=   . (19) 17 

The relationship between the DcRt and Bt is shown in Eq. (20) based on the investigation of Min and 18 

Pheng [60]. 19 
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The salaries for the last week are given by  21 

 
1

7

t

t t

t t

LWSa DSa
−



= −

=   , (21) 22 

where DSat represents the wage for rebar, formwork, or concrete workers on the tth day. The DSat depends 23 

on the number of attendance workers (AWt), work hours, and hourly salary for the normal work hours 24 

and overwork hours. Working hours over 8 hours are considered overtime; the hourly wage for overtime 25 

working is 1+OWSaR times the normal hourly wage. 26 
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. (22) 27 

AWt depends on the absence ratio (AbRt) as shown by 28 
 (1 )tt t RAW W Ab=  − . (23) 29 

where AbRt is positively correlated with the fatigue index FaIt, which represents that fatigue causes a 30 

high absence ratio [61]. 31 

4.4.2. Labor-flow module 32 

This module focuses on the update of the productivity of the workers. The productivity reduction is 33 



caused by physical and environmental reasons based on the study reported in [61]; fatigue caused by 1 

working overtime and poor weather conditions are critical physical and environmental reasons, 2 

respectively.  3 

The influence of fatigue is represented by FaIt and FaEt; the fatigue index, FaIt, depends on work 4 

hours, and the overtime works (WHt-1 > 8) can increase FaIt as shown in 5 
 

1 1max(0,0.5 8)t t tFaI FaI WH− −= + − . (24) 6 

FaEt represents the productivity reduction coefficient caused by long-term fatigue; it is a piecewise linear 7 

and monotonic decreasing function of its corresponding FaIt, and FaEt = 1 when FaIt = 0. 8 

The influence of weather is represented by EnEt. 9 
 

1min(1, 0.3, , , )t t t t tEnE EnE EnTpE EnRfE EnWsE−= + ,  (25) 10 

where EnTpEt, EnRfEt, and EnWsEt represent the effects of temperature, rainfall, and wind speed, 11 

respectively. EnRfEt and EnWsEt are piecewise linear and monotonic decreasing functions of Rft and Wst, 12 

respectively. EnTpEt is a piecewise linear function of Tpt, and EnTpEt is very small when Tp is extremely 13 

high or low. 14 

The detailed expressions of these four piecewise linear functions are set by users of our model; 15 

Table 6 shows an example of the expressions of these functions; they are recommended by human project 16 

managers. 17 

Table 6 Example of the detailed expressions of piecewise linear functions 18 

Breakpoints of the piecewise linear function FaEt 

Value of FaEt 1 0.95 0.85 0.7 0.4 

Value of FaIt 0 2 4 6 8 

Breakpoints of the piecewise linear function EnTpEt 

Value of EnTpEt 0 0.5 1 1 0.5 0 

Value of Tpt (°C) 0 10 20 30 40 50 

Breakpoints of the piecewise linear function EnRfEt 

Value of EnRfEt 1 0.8 0.5 0 

Value of Rft (mm) 2 10 20 50 

Breakpoints of the piecewise linear function EnWsEt 

Value of EnWsEt 1 0.7 0 

Value of Wst (m/s) 5 10 20 

4.4.3. Work-flow module 19 

The work-flow module focuses on the update of the project’s progression. The work content, i.e., 20 

the effort required for completing a construction project, is proportional to the area of the corresponding 21 

construction space; we thus measure the progression of the project by the area of the completed 22 

construction space (At). 23 

The update of progressions is based on the critical flow theory [58]. The increments of progressions 24 

(ΔAt), i.e., completed work contents, on each day are influenced by the combination of labor, material, 25 

and precedence flows; the bottlenecks for the entire process are called critical flows. For example, if the 26 

manager makes the rebar workers work for a long time but only buys a few rebars, the material flow is 27 

the critical flow; if the manager buys several materials and makes the workers work for a long time but 28 

the previous activity is not performed, the critical flow is precedence flow. ΔAt is calculated by  29 
 min( , , ,TA )t t t t tA MaxWA MaxMA MaxPA A = − , (26) 30 

where MaxWAt, MaxMAt, or MaxPAt represents the completed work contents when the labor, material, or 31 

precedence flow is the critical flow, respectively. The item TA − At indicates that the completed areas 32 

cannot exceed the total construction area of the building (TA). 33 



 TA=TF pFZ pZA  .  (27) 1 

MaxWAt is positively related to the total effective working hours, and the productivity reduction 2 

coefficients (FaEt and EnEt) 3 
 =(1+ ) pWH2At t t t tMaxWA FaE EnE AW EWH      , (28) 4 

where EWHt represents the effective work hours of the tth day. EWHt equals to the cumulative effective 5 

time of all work hours. 6 
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Alvanchi et al. [62] observed that short-term fatigue and darkness in the evening reduce productivity. 8 

Thus, we define pEWHi = 1 when i ≤ 8; pEWHi is a monotonically decreasing sequence of i when i ≥ 8. 9 

Further, δ represents a random variable that obeys U[-0.05, 0.05], which indicates that a worker’s 10 

productivity is random instead of a deterministic parameter. 11 

MaxMAt depends on the material stock and ratio between the constructed area and consumed 12 

material; the randomness of the ratio is also considered. 13 
 =(1+ ) pS2At tMaxMA S   . (30) 14 

MaxPAt is related to the current progression. The activities, formwork installation, and concrete 15 

pouring can be performed in construction zones where the corresponding last process was completed 16 

yesterday. 17 
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. (32) 19 

The activity rebar-cage installation can be performed only in zones whose downstairs zones were 20 

completed yesterday. 21 

 ( pFZ) pZA
pZA

t
t t

CcA
MaxRbPA RbA

 
= +  − 

 
. (33) 22 

4.4.4. Material-flow module 23 

The material-flow module focuses on updating the stock of the materials. The stock of the material 24 

(St) changes because of the outflow and inflow. The material inflow comprises ordered and recycled 25 

materials; the lead time of the material deliver is 1 day, and the material outflow comprises consumed 26 

and wasted materials. The waste is attributed to the storage capacity. 27 

The rebar is storable but not recyclable, and the formwork is storable and recyclable; their stock 28 

cannot exceed the maximum storage capacity (MaxS). The concrete is not storable; the concrete not 29 

consumed today will be discarded, and the concrete available tomorrow is the concrete ordered today. 30 

 1
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, (34) 31 

where Ct, Rct, and Bt represent the quantities of the material consumed, recycled, and bought on tth day. 32 

Further, Ct is positively related to the completed area (ΔAt). 33 

 (1 ) t
t t
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
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The formwork will be removed if the concrete is poured. The quantity of the removed formwork 35 

(FwMt) is proportional to the area of the zones completed today. 36 
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The quantity of the formwork in terms of the used and recycled concrete can be calculated by following 2 

Eqs. (37) and (38), respectively. 3 
 1t t t tFwU FwU FwC FwM+ = + − ; (37) 4 

 [1 (1 ) FwRcLR]t tFwRc FwM= − +   , (38) 5 

where FwRcLR represents the loss ratio, which indicates that not all the removed formworks can be 6 

recycled. Further, δ represents a random variable that obeys U[-0.1, 0.1], which indicates that the loss 7 

ratio is a random parameter. 8 

4.4.5. External-flows module 9 

The external-flows module focuses on the updates of weather and material prices, and they do not 10 

rely on action. First, we build random processes based on historical statistics in the real world; then, we 11 

sample the values of weather and price states based on built processes. The technical details of this 12 

module are described in Appendix A. 13 

4.5. Observations 14 

As described in Eq. (3), the observation function mimics collecting necessary information for 15 

decision making in real projects; the necessary information is observationt. In our model, the observationt 16 

comprises (1) date information, i.e., t; (2) observable state parameters, i.e., parameters in Table 5 except 17 

EnEt and FaIt; (3) historical weather information within the last 2 days, i.e., Tpt-2/Rf t-2/Wst-2 to Tpt-1/Rf t-18 

1/Wst-1; (4) historical work hours within the last 3 days, i.e., WHt-3 to WHt-1; (5) forecasts of cash inflow 19 

within the next 3 days, i.e., predicted values from ICat+1 to ICat+3; and (6) forecasts of weather 20 

information and material prices. 21 

Observe() comprises the selection and forecast modules. The selection module picks up the first four 22 

components of observationt from SRecordt, and the forecast module mimics the forecast of cash inflow, 23 

weather, and material prices in the real world. The technical details of the forecast module are described 24 

in Appendix B. 25 

4.6. Policy 26 

The policy function represents the resource-flow control agent in our model, which output actiont 27 

according to observationt. Our model is more complex than existing ones, and actiont and observationt 28 

have too many elements as shown in Section 4.2 and Section 4.5. Assume that the number of possible 29 

actions and observations are N and M; if we treat any element of actiont or observationt as a continuous 30 

variable; N or M are infinite. Even if we treat all these elements as discrete variables, N and M are large 31 

because of the high dimensionality and large intervals of actiont and observationt. 32 

As described in Section 3.2, the policy function can be based on a traditional RL method when both 33 

of M and N are small; based on an offline DRL method when M is huge but N is small; and based on an 34 

online DRL method when both M and N are large. Thus, our policy function is based on an online DRL 35 

method, i.e., the PPO algorithm; its architecture is shown in Fig. 3(b). 36 

4.7. Reward 37 

The reward function is adopted to evaluate the degree of the resource-flow control agent that 38 

achieves our objective. The objective is the optimization of cash and work flows; this comprises the 39 

following four sub-goals: (1) avoiding project failure caused by cost overrun, i.e., Cat ≥ OCat (the 40 

remaining money is sufficient for salary payment and material ordering); (2) avoiding the project failure 41 



caused by a time overrun, i.e., T ≤ MaxT; (3) maximize the profit (NPVT); and (4) minimize the duration 1 

of the entire projects (T). 2 

However, rewards associated with these sub-goals are sparse, and they can only be obtained in very 3 

few successful or failure states. The agent can rarely reach the success states at the beginning of the 4 

training. If we use only sparse rewards, the agent cannot identify which attempts are closer to the success 5 

states; further, they cannot make progress. According to Ng et al. [63], dense rewards are required to 6 

guide the agent towards the success states. Thus, the reward function must consider the dense and sparse 7 

rewards that correspond to each sub-goals, as shown in  8 
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where ωs represent the weights. The users of our model can determine the precedence of the sub-goals 10 

by themselves, and they set the values of ωs according to the precedence. 11 

Further, DeRP
t and SpRF

t represent the dense and sparse rewards related to sub-goals (1) and (2), 12 

i.e., avoiding project failure. DeRP
t guides the agent in advancing its progression, which equals the ratio 13 

of the area completed on the tth day. 14 
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where SpRF
t represents the negative reward for project failure. 16 
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Further, DeRD
t and SpRD

t correspond to sub-goals (2) and (4), i.e., the optimization of the work flow. 18 

The agent receives negative rewards when the duration of the project is close to the maximum value that 19 

the client can tolerate. 20 
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DeRW
t, DeRM

t, SpRW
t, and SpRM

t correspond to sub-goals (1) and (3), i.e., the optimization of the 23 

cash flow. DeRW
t and SpRW

t, and DeRM
t and SpRM

t represent dense and sparse rewards corresponding to 24 

labor and material expenses, respectively. The NPVT is the most critical index of the cash flow, and this 25 

equals the cumulative cash inflow minus outflow. 26 

 1
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The cumulative cash outflow consists of the cumulative labor and material expenses, i.e., WCostT and 28 

MCostT.  29 
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The main part of the cash inflow is the milestone payment. 31 
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Thus, DeRW
t and DeRM

t are adopted to minimize the daily labor and material expenses, respectively. 1 

 1
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where Wratio and Mratio represent the approximate ratios of WCostT and MCostT in the project’s total 4 

cost. 5 

If the agent profits by cutting labor and material costs, it obtains SpRW
t and SpRM

t when the project 6 

is completed. 7 
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The agent will receive a huge negative reward when it is just learning to complete the building (it has not 10 

learned to save money) if Eqs. (49) or (50) do not contain the maximum functions. In this case, the agent 11 

prefers to maintain 99% progression rather than complete the entire project. 12 

5. Model solving based on the online DRL 13 

Fig. 5 describes the procedures to solve the optimal resource-flow control problem. Five resource-14 

flow control agents are proposed, and each of them is based on one or two DNNs. The architectures of 15 

these DNNs are determined in Section 5.1. In Section 5.2, we present the developed discrete event 16 

simulator (DES) based on the resource-flow control model. The training data are generated by calling 17 

the DES in Section 5.3, and we use the PPO algorithm to train the agents to learn the optimal control 18 

policies in Section 5.4. 19 

 20 

Fig. 5. Procedures to solve the resource-flow control problem 21 

5.1. Determine the architecture(s) of the DNN(s)  22 

Fig. 3(b) shows the architecture of the policy function of an agent. The normalization module first 23 

converts observationt to ot; one or two DNNs map ot to vt and meana
t, vt reflects the evaluation of the 24 

agent’s current status of the project (the criteria is the reward function), and meana
t is used to sample at 25 

based on the Gaussian distribution N(meana
t, exp(logstda)); at corresponds to the recommended decisions; 26 

i.e., actiont, and a denormalization module that converts at to actiont. 27 



The DNN adopted in our policy function is a multilayer fully connected network, which contains a 1 

basement (Bξ), value (Vφ), and policy (πθ) network. The Bξs and Vφs of the five proposed agents share 2 

the same architecture, whereas there are three types of architectures for their πθs: full, work hour, and 3 

material. These architectures are presented in Fig. 6, where the number in the lower right corner of each 4 

rectangle represent the size of the corresponding output vector. All activation functions in these networks 5 

are rectified linear units, except the last hidden layers of the policy networks, whose activation functions 6 

are hyperbolic tangents (tanh). According to Lillicrap et al. [64], batch normalization rarely improves the 7 

capability of a DRL agent; the hidden layers of our networks do not contain batch normalization units. 8 

 9 

(a) 10 

 11 

(b)  12 

 13 

                               (c)                             (d)                    (e) 14 

Fig. 6. Architecture of the (a) basement network, (b) full, (c) work hour, (d) material policy network, and (e) value 15 

network. 16 

The input of Bξ is ot; the parameters are distributed in different input layers based on their influence 17 

on decision making. The parameters that are indirectly influenced are first processed by the 1st and 2nd 18 

hidden layers, and then, a feature vector with a size of 12 is output. Subsequently, this vector is 19 

concatenated with parameters that are directly influenced and processed by the 3rd and 4th hidden layers. 20 

The output of Bξ is thus produced, and its size is 128; this vector is the input to Vφ and πθ; vt and meana
t 21 

are the outputs, respectively. Further, vt indicates that the expected cumulative reward can be obtained if 22 

the agent takes the best actions every time afterward. The output meana
t of the full policy network (Fig. 23 



6(b)) corresponds to decision variables for labor and material flows management. The work hour (Fig. 1 

6(c)) or material (Fig. 6(d)) policy networks only makes decisions for labor or material flow management, 2 

respectively. 3 

5.2. Develop the DES 4 

We develop a DES based on our proposed resource-flow-control model. Our proposed model is a 5 

POMDP model that consists of the policy, transition, observation, and reward functions shown in Section 6 

3.1. The DES includes modules corresponding to these functions. 7 

The policy function of a resource-flow control agent can be pure or hybrid; the architecture of pure 8 

DRL-based policy functions is illustrated in Fig. 3(b). Section 3.3 introduces the advantages of the hybrid 9 

policies of DRL and rule-based methods. Therefore, we propose five agents with pure or hybrid policy 10 

functions as shown in Fig. 7. The policy functions of the 1st and 2nd agents share the same architecture as 11 

shown in Fig. 7(a), i.e., they adopt a single full policy network (SFPN) to manage the labor and material 12 

flows; their reward functions are different. The 3rd agent uses single work-hour policy network (SWPN) 13 

to manage the labor flow; the material flow is controlled by a rule-based policy as shown in Fig. 7(b). 14 

The situation for the 4th agent is the opposite of 3rd one as shown in Fig. 7(c), i.e., single material policy 15 

network (SMPN) for material flow and rule-based policy for labor flows. The rule-based policies in the 16 

3rd and 4th agents are halves of an empirical policy; this mimics the mind of human managers. The 17 

technical details of the empirical policy are described in Appendix C. The 5th agent adopts a double-18 

policy network (DPN) architecture, and this contains two DNNs, as shown in Fig. 7(d). All these agents 19 

are implemented in Python3 with the PyTorch library. 20 

 21 

Fig. 7. Policy functions for five agents: (a) SFPN for the 1st and 2nd agents; (b) SWPN for the 3rd agent; (c) SMPN 22 

for the 4th agent; and (d) DPN for the 5th agent 23 

The formulation of the reward function is described in Section 4.7. As indicated in Eq. (39), the 24 

reward function comprises some components; their weights need to be set with the following three 25 

principles: (1) in terms of the precedence of the sub-goals: if saving the labor cost is more important than 26 

saving the material cost, ωW,1 and ωW,2 are higher than ωM,1 and ωM,2; (2) balancing the weights of dense 27 

and sparse rewards: if the weights for sparse rewards are higher, the training will be more difficult; 28 

however, the performance of the agent will be better; (3) the value of the cumulative reward should be in 29 

the interval [0, 1] that benefits the convergence of the DNNs. A DNN corresponds to a reward function, 30 

and the weights for the first four agents (which contain only one DNN) are summarized in Table 7. The 31 

5th agent is a DPN architecture that contains the DNNs of the 3rd and 4th agents and their corresponding 32 

reward functions. 33 

Table 7 Weights of the reward functions of the agents 34 



 ωP ωW,1 ωM,1 ωD,1 ωW,2 ωM,2 ωD,2 ωF 

Agent #1: SFPN 0.5 0.25 0.25 0.5 2 2 1 0.15 

Agent #2: SFPN 0.5 1 0.125 0.5 8 1 1 0.15 

Agent #3: SWPN 0.5 2 0 0.5 16 0 1 0.15 

Agent #4: SMPN 0.5 0 0.25 0.5 0 2 1 0.15 

The formulations of the transition and observation are described in Section 4.4 and 4.5, respectively; 1 

all of them are implemented in Python3. The transition module is adopted to simulate the construction 2 

project and external environment; we validated its correctness by unit tests with real project data; the 3 

results show that the reality gap is acceptable. 4 

5.3. Generate the training data 5 

The DRL methods solve the optimal resource-flow-control actions by optimizing the policy function. 6 

As described in Section 3.2 and 5.1, the internal parameters of the policy function include θ, φ, ξ, and 7 

logstda; the training data are used to update these parameters.  8 

The process of a construction project is simulated by repeatedly calling the DES, and the training 9 

data are collected simultaneously, as illustrated by the pseudocode in Table 8. The state and its historical 10 

record are initialized in lines 1 and 2, and they corresponds to Eq. (5). Line 3 determines whether the 11 

simulated project is the end; CcAt < TA implies that the project is yet to be successfully completed; the 12 

second and third conditions, t < MaxT and Cat ≥ ICat-1, indicate that the project has failed because of the 13 

time and cost overruns, respectively. Mention that, 14 
 

1 1 1t t t tCa ICa Ca OCa− − −   . (51) 15 

Line 5 calls the observation function, i.e., Eq. (3); lines 6–9 call the policy function, i.e., Eq. (1); 16 

line 10 calls the transition function, i.e., Eq. (2); and line 11 calls the reward function, i.e., Eq. (4). In line 17 

12, P(at | ot, πθ) represents the possibility of the DNN recommending at when the input is ot; this can be 18 

calculated using Eq. (52). 19 
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A sample of training data is the combination of ot, at, vt, rt, and P(at | ot, πθ) collected in line 13. The 21 

collected training data are necessary for optimizing the internal parameters of the policy function, i.e., θ, 22 

φ, ξ, and logstda. 23 

Table 8 Pseudocode for generating the training data 24 

1 t ← 1, SRecord ← [] 

2 statet ← init_state 

3 while CcAt < TA and t < MaxT and Cat ≥ ICat-1: 

4  SRecord.append(statet) 

5  observationt ← Observe(SRecord) 

6  ot ← Normlization(observationt) 

7  meana
t ← πθ(Bξ(ot)), vt ← Vφ(Bξ(ot)) 

8  at ← Sample(N(meana
t, exp(logstda))) 

9  actiont ← Denormlization(at) 

10  statet+1 ← Transition(statet, actiont) 

11  rt ← Reward(statet, statet-1, actiont) 

12  P(at | ot, πθ) ← Conditional_Prob(at, ot, meana
t, logstda) 

13  TrainingData.append([ot, at, vt, rt, P(at | ot, πθ)]) 

14  t ← t + 1 



5.4. Training the agent 1 

Table 9 illustrates the pseudocode of training the agents. As indicated in line 1, the optimization 2 

starts after collecting the TH samples of training data, where TH is called “the size of the horizon” in the 3 

field of DRL. TH is considerably larger than T, i.e., the duration of a simulated project, which indicates 4 

that we need to conduct several simulations for collecting TH samples. target and advantage are necessary 5 

intermediated parameters for optimizing the policy function whose elements include tart and advt. Further, 6 

tart represents the target value that is a correction of vt+1 after considering the feedback of rt; advt 7 

represents the estimated advantage of at. Further, tart and advt are calculated based on vt and rt with the 8 

generalized advantage estimator [65]. Thus, we calculate tart and advt by following Eqs. (53)–(56), 9 
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HTt t t

t tt t
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 t

t tadv tar v= − , (56) 13 

where both γ and λ are in the interval [0, 1]. Here, γ represents the discount rate for future rewards, and λ 14 

reflects the bias level of the generalized advantage estimator; a higher value of λ lowers the bias but 15 

results in a higher variance.  16 

In line 3, we optimize θ, φ, ξ, and logstda using the Adam optimizer [66] for nE epochs. Further, we 17 

select a batch of samples from the collected TH samples in each epoch; the batch size is TB. The 18 

optimization objective is to minimize a loss function L(θ, φ, ξ, logstda), which reflects the gap between 19 

the current DNN and the optimal one. The optimal DNN outputs the action with maximum advt, and 20 

evaluates vt without deviation. L(θ, φ, ξ, logstda) consists of 3 parts; this is expressed as 21 
 

1 V 2 DistEnL ,( , , ) L c Ll c L= +  − aogstd   , (57) 22 

where c1 and c2 represent the coefficients. The optimization of Lπ increases the possibility of the policy 23 

network (πθ) to select an action that has a higher advt; however, it needs to avoid the output of πθ changing 24 

too fast. 25 
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The optimization of LV enables the value network (Vφ) to provide a more precise estimation. 28 
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LDistEn reflects an entropy bonus for the distribution, N(meana
t, exp(logstda)). 30 

 B

DistEn 1
[P( | ,π ) ln(P( | ,π ))]

T t t t t

t
L  =

=  a o a o . (61) 31 

The training data is cleared (line 4) after parameter optimization.  32 

Table 9 Pseudocode for training the agent 33 

1 if len(TrainingData) = TH: 

2  target, advantage ← Advantage_Estimator(TrainingData) 

3  θ, φ, ξ, logstda ← Optimizer(target, advantage, TrainingData) 

4  TrainingData ← [] 

6. Experiments and results 34 



Decision-making agents learn to manage the labor and material flows of construction projects with 1 

our proposed model and methodology. As discussed in Section 3.4, the capabilities of DRL-based agents 2 

are validated in simulated scenarios, and non-DRL-based policies need to be the baselines. Experiments 3 

are thus conducted, and the rest of this section is organized as follows. Section 6.1 defines the simulated 4 

scenarios and training setups adopted in these experiments; Section 6.2 shows the advantages of online-5 

DRL over other optimization methods; Section 6.3 compares the DRL-based agents with the empirical 6 

policy used by human managers; Section 6.4 illustrates the performances of DRL-based agents in 7 

multiple project setups; Section 6.5 discusses the optimal architecture of the decision-making agent. 8 

6.1. Simulated scenarios and training setups 9 

6.1.1. Scenario #0: real project in Beijing 10 

Scenario #0 mimics a typical residential project in Beijing; its environmental setups are summarized 11 

in Table 10. The constructed building has 25 floors, and the area of each floor is 600 m2, which is divided 12 

into 12 construction zones. The start date of the project was May 31st (the 151st day of the calendar year) 13 

because the following months have good weather for construction. The standard productivity of workers 14 

and the ratio between completed area and consumed materials are calculated based on the real records of 15 

resource usage and progression. The standard unit prices for different resources are obtained from the 16 

financial statement. Based on these prices, we estimate that the cost for each floor does not exceed 17 

350,000 CNY if the empirical optimal policy is adopted. Therefore, we set the amount of a milestone 18 

payment (pFCa) equal to 400,000 CNY; the start-up cash is 1 million CNY. 19 

Table 10 Setups for scenario #0 20 

Parameter SDate InitCa TF pFZ pZA MaxT pFCa IR 

Value 151 1,000,000 25 12 50 150 400,000 0.0001 

Parameter RbW FwW CcW NAbR pRbHSa pFwHSa pCcHSa OWSaR 

Value 12 20 8 0.05 27.5 27.5 22.5 200% 

Parameter pIMCa MaxRbS MaxFwS FwRcLR DcRbB DcFwB DcCcB MinDcR 

Value 1,000 500 2,000 0.05 400 800 150 0.9 

Parameter pRbWH2A pFwWH2A pCcWH2A pRbS2A pFwS2A pCcS2A 

Value 2.5 1.51 3.84 1.54 0.25 3 

6.1.2. Scenario group #1: change external environmental conditions 21 

As shown in Table 11, we adjusted the budget, weather, and market conditions for three additional 22 

simulated scenarios in scenario group #1, respectively. In scenario #1, we reduced the start-up cash from 23 

1 million CNY to 900,000 CNY. The holding cash reached a minimum in the early stage of the project 24 

because of the delay in obtaining the milestone payment; cutting the start-up cash caused the early stage 25 

to be more difficult. In scenario #2, the start date of the project was February 1st (the 32nd day of the 26 

calendar year). The productivity reduced by 45% on average (whereas the corresponding reduction ratio 27 

is 10% in scenario #0) because the extremely low temperatures in February and March prevented workers 28 

from working, and the fluctuations in productivity are considerably larger. We increased the number of 29 

workers by 65%, and therefore, the budget needed to be increased. In scenario #3, the discount 30 

mechanism was eliminated. The theoretical minimal discount for material purchases was 90% in scenario 31 

#0. 32 

Table 11 Setups for scenario group #1: different environmental conditions (omit unchanged parameters) 33 

#0: CC 
Parameter SDate InitCa MinDcR 

#1: HBC 
Parameter SDate InitCa MinDcR 

Value 151 1,000,000 0.9 Value 151 900,000 0.9 



#2: HWC 
Parameter SDate InitCa MinDcR 

#3: HMC 
Parameter SDate InitCa MinDcR 

Value 32 1,000,000 0.9 Value 151 1,000,000 1 

* CC, HBC, HWC, and HMC mean common, harsh budget, weather, and market conditions, respectively 1 

6.1.3. Scenario group #2: change project setups 2 

As shown in Table 12, we adjusted the quantity of the work content and the number of workers for 3 

three additional simulated scenarios in scenario group #2, respectively. In scenario #4, we increased the 4 

number of floors (of the constructed building) and the maximum project duration by 20%, respectively. 5 

In scenario #5, we increased the area of each floor from 600m2 to 750m2. The number of workers also 6 

increased by 25% to ensure the makespan unchanged, and the milestone payment for a completed floor 7 

increased by 25% too. In scenario #6, we changed the number of workers for each type in different 8 

proportions. 9 

Table 12 Setups for scenario group #2: different projects (omit unchanged parameters) 10 

#0: RPB 
Parameter TF pFZ pZA MaxT pFCa RbW FwW CcW 

Value 25 12 50 150 400,000 12 20 8 

#4: INF 
Parameter TF pFZ pZA MaxT pFCa RbW FwW CcW 

Value 30 12 50 180 400,000 12 20 8 

#5: IAF 
Parameter TF pFZ pZA MaxT pFCa RbW FwW CcW 

Value 25 15 50 150 500,000 15 25 10 

#6: 

CNWDP 

Parameter TF pFZ pZA MaxT pFCa RbW FwW CcW 

Value 25 12 50 150 400,000 16 16 9 

* RPB, INF, IAF, and CNWDP mean real project in Beijing, increasing the number of floors, increasing the area of 11 

each floor, and changing the number of workers in different proportions, respectively 12 

6.1.4. Training setups 13 

The training setups are summarized in Table 13. We determined the hyperparameters and 14 

coefficients of the loss function by considering the experience of other DRL studies. We trained DRL 15 

agents on a computer with an i7-11700K @3.60GHz CPU and Nvidia RTX 3060 GPU, and saved the 16 

values of the agent’s (θ, φ, ξ, and logstda) and normalization parameters (means and standard deviations 17 

of observationt) at every 20 updates. 18 

Table 13 Hyper-parameters and coefficients of loss function 19 

Parameter TH TB nE γ λ Learning rate ε c1 c2 

Value 1024 128 16 0.99 0.95 0.0001 0.2 0.5 0.01 

We trained three agents and selected the best one, then tested it five times and showed its average 20 

performance as the result of each experimental group. We optimized with GA five times then showed its 21 

best performance, or tested the empirical policy five times then showed its average performance as the 22 

result of each control group. 23 

6.2. Comparison between online DRL and GA 24 

6.2.1. Experimental design 25 

DRL-agents with an SFPN architecture were trained and tested in scenario #0, and a GA method 26 

was the baseline. This experiment included two control groups with different runtimes; the runtime of 27 

GA was approximately equal to the training time of online DRL in the first one, and much longer than in 28 

the second one. 29 

According to Section 3.2, we can infer that RL and offline DRL cannot be the baselines because of 30 



the high dimensionality and large intervals of the decision variables. RL algorithms like Q-learning need 1 

to build a M×N Q-table, while offline DRL like deep Q-learning need a DNN whose output layer’s size 2 

is N. M and N is the numbers of possible observations and actions respectively; they are infinite in our 3 

problem because the observation and action spaces are continuous. Even if we discretize them, M and N 4 

will not be small because the dimensions are too high. (Dimensions of observation and action spaces is 5 

59 and 6, respectively.) 6 

6.2.2. Result and discussion 7 

The GA can optimize and simulate more times in the same runtime than the online DRL, because it 8 

need not to update the DNN. However, its performances are far less well than the online DRL as shown 9 

in Table 14. In control group #1, we set the number of generations and population size to 1024 and 256, 10 

respectively, to ensure the runtime of GA was approximately equal to the training time of online DRL. 11 

However, the GA method did not complete the project, and cost overrun occurred on the 50 th day. We 12 

increased the runtime by approximately seven times in control group #2, but the performance of GA has 13 

barely improved. The reason was that the length of the chromosome code was approximately 2000 in 14 

this problem, which made the convergence difficult. 15 

Table 14 Comparison between online DRL and GA 16 

Method 
Number of 

optimization 

Number of 

simulation 

Runtime 

(minute) 
Reward Progression Performance 

GA 1024 262144 18.4 0.08 64.5% Cost overrun occurs on the 50th day  

GA 10000 2000000 140.4 0.19 86.3% Cost overrun occurs on the 69th day 

Online 

DRL 
500 9000 14.7 1.09 100% 

Complete the project in average 89 

day and profit 

Training an agent with the online DRL method required 14.7 minutes. Fig. 8 shows the reward of 17 

an DRL-based agent during the training process, the agents outperforms the GA method after 18 

approximately 60 optimizations, breaks even after approximately 80 optimizations and outperforms the 19 

empirical policy after approximately 360 optimizations. Further, the trained agent can complete the 20 

project in average 89 days and profit. 21 

 22 

Fig. 8. Reward of a DRL-based agent during training progress 23 

6.3. Comparison between the DRL-based and empirical methods 24 

6.3.1. Experimental design 25 



An empirical policy used in the real project was selected as the baseline, which is the static rule-1 

based method discussed in Appendix C. We trained DRL-agents with an SFPN architecture in scenario 2 

group #1, which means this experiment included four experimental and control groups, and they 3 

illustrated the performances of DRL-agents and the empirical policy under common and harsh budget, 4 

weather, and market conditions, respectively. 5 

It is difficult to design a dynamic rule-based policy with high capability. As an example, let us discuss 6 

a policy that orders a higher quantity for each type of materials when its price is inexpensive. First, the 7 

uncertainty of the prices makes it difficult to determine the internal parameters of this policy. Although 8 

we model the prices for a calendar year as random processes, the start date and maximum duration of the 9 

project are input by users. The upper and lower limits of the prices are unknown because the start date 10 

for the project is also unknown. 11 

Even if we determine the relevant parameters for this policy, it will probably not work well. The 12 

completed work contents for the type of activities depend not only on corresponding material, but also 13 

on the productivity of the corresponding workers and the precedence. Unsynchronized fluctuations in the 14 

weather and price curves can cause this policy to fail. For example, this policy tends to buy much concrete 15 

when the concrete price is low; however, if the weather is bad or the formwork price is high, only a small 16 

amount of concrete is consumed because of the low productivity of the workers or the undone precedence 17 

activity. Delays in progressions and waste of materials occur in this situation. 18 

6.3.2. Result and discussion 19 

We tested the trained agents five times in scenarios #0 to #3; the project completion rate was 100% 20 

for each agent, and the average duration and cost are shown in Fig. 9. In scenario #1 (harsh budget 21 

condition), The average duration was 4.04% longer than that in scenario #0, whereas the average total 22 

cost was reduced by 2.3%, which implies that the agent learned to reduce the cost by decelerating the 23 

construction in the early stage of the project. In scenario #2, although the productivity of the workers 24 

dropped by 39.4% because of poor weather, the average duration increased only by 22.2% and the 25 

average total cost increased by 16.1%. In scenario #3 (harsh market condition), the average duration was 26 

4.27% longer than that in scenario #0; the average total cost increased by only 1.24%. 27 

 28 

Fig. 9. Comparison of performance of the DRL-based agents under different environments 29 

We also tested the performance of the empirical policy in scenarios #0 to #3; its comparison with 30 

the DRL agents is illustrated in Fig. 10. The project cannot be completed if we adopt the empirical policy 31 

in scenarios #1 and #2; the cost overrun occurs on the 11th and 30th days. In scenario #3, the cost overrun 32 

occurs in two out of five tests; compared with the performance of the empirical policy in scenario #0, the 33 

average total cost increased by 4.19%, whereas the average duration decreased by 0.67% in the remaining 34 

three successful tests. The performance of the empirical policy in the common condition (scenario #0) 35 

was close to the DRL-based agent, it only spent 0.67% and 3.62% more time and money, respectively. 36 



However, this experiment indicates that the advantages of DRL-based agents over empirical policy will 1 

increase if the environment becomes harsher. 2 

 3 

Fig. 10. Comparison of performance between the DRL-based agents and the empirical policy under different 4 

environments 5 

6.4. Performance of DRL-based agents in multiple projects 6 

6.4.1. Experimental design 7 

This experiment included one experimental and three control groups; the experimental group was 8 

conducted in scenario #0, while the control groups were conducted in scenario #4, #5 and #6, respectively. 9 

In each group, we trained and tested DRL-agents with an SFPN architecture in the corresponding scenario, 10 

and the empirical policy was the baseline. Further, we compared the advantages of the DRL-based agents 11 

over the empirical policies in different project setups. 12 

6.4.2. Result and discussion 13 

Fig. 11 shows the average performance of these agents in minimizing the total duration and cost, 14 

and the additional details are provided in Table 15. The DRL-based agents still possess remarkable 15 

capability in scenarios #4 and #5, while the advantage of the agent over empirical policy significantly 16 

increased in scenario #6. The reason for this is that the number of workers for each type changed in 17 

different proportions in scenario #6, which caused the work hours of each type of workers also changed 18 

in different proportions according to the empirical policy, further caused the unsynchronized fluctuations 19 

in the fatigue index and productivity of each type of workers, and led to the unstable workflow eventually. 20 

The results indicate that the advantage of the DRL method over empirical policy will increase if the 21 

project setups are unreasonable. 22 

 23 

Fig. 11. Comparison between the DRL-based agents and the empirical policy in different projects 24 



Table 15 Comparison between the DRL-based agents and the empirical policy in different projects 1 

 
Duration Labor cost Material cost Total cost 

Mean  Gain Mean Gain Mean Gain Mean Gain 

EG: RPB 
Empirical policy 89.6 0% 722.33K 0% 7361.13K 0% 8083.46K 0% 

Agent (SFPN) 89 −0.67% 913.05K 26.40% 6877.48K −6.57% 7790.54K −3.62% 

CG #1: 

INF  

Empirical policy 105 0% 847.66K 0% 8698.01K 0% 9545.67K 0% 

Agent (SFPN) 108.4 3.24% 1133.58K 33.73% 8003.34K −7.99% 9136.92K −4.28% 

CG #2: 

IAF 

Empirical policy 86.8 0% 872.76K 0% 9167.34K 0% 10040.09K 0% 

Agent (SFPN) 86.2 −0.69% 1129.52K 29.42% 8577.31K -6.44% 9706.83K -3.32% 

CG #3: 

CNWDP 

Empirical policy 98.8 0% 931.47K 0% 8154.02K 0% 9085.49K 0% 

Agent (SFPN) 95 −3.85 860.87K -7.58% 6804.74K -16.55% 7665.61K -15.63% 

* EG and CG mean experimental and control groups, respectively; RPB, INF, IAF, and CNWDP mean real project 2 

in Beijing, increasing the number of floors, increasing the area of each floor, and changing the number of workers 3 

in different proportions, respectively 4 

6.5. Optimal architecture of DRL-based agent 5 

6.5.1. Experimental design 6 

Section 3.3 described the possibility and advantage of adopting DRL-based agents with different 7 

architectures, and we have proposed agents with different architectures as shown in Fig. 7. Hence, we 8 

trained and tested all these agents in scenario #0, and compared their capabilities in duration and cost 9 

reduction. 10 

6.5.1. Result and discussion 11 

Fig. 12 shows the average performance of these agents in minimizing the total duration and cost. 12 

All five agents learned basic ideas about labor and material flows management. Even the worst agent 13 

possessed a 95% capability of the (full) empirical policy; three agents outperformed the empirical optimal 14 

policy. The best agent is the 4th agent; it is used as an SMPN to manage the material flow and follow the 15 

suggestions of the empirical work-hour policy. This reduced the total cost by 7.59% with no influence 16 

on the total duration. The additional details are provided in Table 16. 17 

 18 

Fig. 12. Comparison between each DRL-based agent and the empirical policy 19 

Table 16 Comparison between the DRL-based agents and empirical policy 20 

 Duration Labor cost Material cost Total cost 

Mean  Gain Mean Gain Mean Gain Mean Gain 

Empirical policy 89.6 0% 722.33K 0% 7361.13K 0% 8083.46K 0% 



Agent #1: SFPN 89 −0.67% 913.05K 26.40% 6877.48K −6.57% 7790.54K −3.62% 

Agent #2 SFPN 90.6 1.12% 808.15K 11.88% 7382.92K 0.30% 8191.06K 1.33% 

Agent #3: SWPN 95 6.03% 712.69K −1.33% 7825.04K 6.30% 8537.73K 5.62% 

Agent #4: SMPN 89.8 0.22% 723.22K 0.12% 6746.34K −8.35% 7469.60K −7.59% 

Agent #5: DPN 92.6 3.35% 750.28K 3.87% 6888.07K −6.43% 7638.34K −5.51% 

We observe that the DRL algorithm outperformed the empirical policy in minimizing material cost 1 

by analyzing the records in Table 16; however, the trained SFPNs and DPN did not perform as well as 2 

the empirical policy in terms of reducing the labor cost. Although the 3rd agent spent the least budget on 3 

salary payments, its SWPN did not keep pace with the empirical material-ordering policy; this caused 4 

the duration to be five days longer and the total cost to increase. One reason for this is that the complexity 5 

and uncertainty of the material flow make it difficult for the empirical policy to cope with it, whereas the 6 

8-hour-per-day labor allocation policy is closer to the optimal solution under the project and 7 

environmental setups of scenario #0 (scenario #0 mimics a real project, which is in common weather, 8 

budget, and market conditions). In addition, the labor cost is only a tiny part of the total cost, which 9 

makes a policy network insensitive to it. Although we can magnify the influence of labor costs by 10 

adapting the weights of the reward function, this adjustment can cause other capabilities to decrease. For 11 

example, we increased ωW,1 and ωW,2 and decreased ωM,1 and ωM,2 for the 2nd agent, which caused the 12 

labor cost to decrease; however, it increased the material cost. A DPN architecture is a better solution, 13 

and it enables the rewards of labor and material costs to not interfere with each other. Therefore, the 5th 14 

agent outperformed the first two. 15 

7. Conclusions 16 

Existing optimization models in construction project management failed to address the integrated 17 

control of labor and material flows. This paper thus proposes a novel model for optimizing the work and 18 

cash flows by continuous and adaptive control of the labor and material flows. The proposed model 19 

formulates the complex and uncertain interactions among the objectives and decision variables. First, 20 

coupling interactions among the work, cash, labor, material, and external flows are modelled carefully; 21 

further, multiple labor and material flows are involved in the decision variables. Finally, the uncertainty 22 

from diverse sources such as weather and market are considered for creating a robust model. 23 

Given that our model is more complex with high uncertainty compared to the existing models, it is 24 

difficult to solve it with conventional methods. Proximal policy optimization (PPO), an online deep 25 

reinforcement learning (DRL) algorithm, is adopted to solve our model. Therefore, we first formulate 26 

our resource-flow-control model as a partially observable Markov decision process (POMDP); the 27 

POMDP includes agents that represent the resource-flow controllers and simulated scenarios that mimic 28 

real projects. The PPO algorithm trains the agents to learn the optimal resource-flow-control strategies 29 

by trial and error in the simulate scenarios. 30 

Numerical experiments conducted in the simulated scenarios illustrates the following four facts: (1) 31 

the conventional optimization methods failed to control the labor and material flows, but our DRL-based 32 

approach succeeded; (2) the DRL-based method outperformed the empirical policy in common budget, 33 

weather, and market conditions, and had greater advantages in harsher environments; (3) the DRL-based 34 

method applied to multiple projects, and its capability remained remarkable; (4) a hybrid policy of DRL 35 

and rule-based methods, i.e., the DRL-based agent managing the material flows while the empirical 36 

policy managing the labor flows, led to the best results. 37 

This paper contributes to the intelligent management of construction projects. Our proposed 38 

POMDP-based model enhances the existing optimization models by considering complexity and 39 

uncertainty. Further, the DES can be a tool to train and test DRL-based resource-flow control agents. We 40 



designed policy and reward functions for the five agents, which can inspire other researchers. The 1 

experiments demonstrate the advantage of the DRL algorithm over other methods when optimizing 2 

complex problems in uncertain environments. Further, the trained agents can complete the projects and 3 

achieve high profit margins by avoiding wasteful and no value-adding activities, which suggests that 4 

DRL technology can empower the last planner system to achieve the goals of lean and green construction. 5 

In the future, our resource-flow control model needs to be improved and extended. For example, 6 

current model only applies to multistory reinforced concrete buildings, more sort of projects need to be 7 

considered; control strategies for more complex scenarios should be studied, and this implies that we 8 

need to consider more decision variables, model interactions among more flows as well as human-robot 9 

interaction[67]. More optimization objectives such as the quality, safety[68] of the project and the 10 

satisfaction of the stakeholders should be considered. Further, larger/deeper and more effective DNN 11 

architecture will be proposed and tested, because the more complex models need to be solved. Finally, 12 

we will try to employ more DRL algorithms for improving the training effects and reducing the training 13 

time. 14 
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Appendix A. External flows module of the transition function  19 

The external-flows module first generates baseline curves based on historical statistics. For the 20 

weather information, the baseline curves consider piecewise fittings of the average temperature, 21 

probability of precipitation, monthly precipitation, and wind speed curves over the years in Beijing (raw 22 

curves are shown on the website [69]). For the material prices, the baseline curves equal the product of 23 

trigonometric and linear functions; the trigonometric functions represent periodicity, whereas the linear 24 

functions represent inflation. The base price, peak dates, and inflation rates are determined based on the 25 

news records in China. The base prices of rebar, formwork, and concrete are 3,000 CNY/ton, 20 CNY/m2, 26 

and 480 CNY/m3, respectively; the peak dates of the rebar and formwork prices are approximately mid-27 

September and mid-April, respectively, whereas the periodic fluctuations of concrete price are not 28 

obvious; the inflation rates for rebar, formwork, and concrete are 30%, 5%, and 10%, respectively. 29 

Then, the external-flows module samples annual curves of weather (Tpt, Rft, and Wst) and price 30 

(RbPrt, FwPrt and CcPrt) states at the beginning of each simulation. For the weather information, the 31 

rainy dates are determined based on the probability of precipitation baseline, and then, the annual curve 32 

of Rft is determined based on the average monthly precipitation baseline and rainy dates; the annual 33 

curves of Tpt and Wst are finally determined by adjusting the baseline of the temperature and wind speed, 34 

while assuming that the temperature rises and wind speed drops before the rainy day. A reverse situation 35 

occurs on a rainy day, and the increments and decrements are positively correlated with Rft. The examples 36 

of the sampled annual curves for Rft, Tpt, and Wst are indicated in Fig. A.1. For the material prices, the 37 

annual curves of RbPrt, FwPrt, and CcPrt are determined by adding minor white noise processes to their 38 

baselines. 39 
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Fig. A.1. Examples of generated annual curves of (a) Rft, (b)Tpt, (c)Wst 7 

Appendix B. Forecast module of the observation function 8 

The forecast module mimics the forecast of cash inflow, weather, and material prices in the real 9 

world. For the cash inflow, the module predicts ICat+1 to ICat+3 based on the progressions because the 10 

milestone payments are the main part of cash inflow. For the weather forecast, the module first predicts 11 



the rainfall within the next three days; the nearer the day, the higher is the accuracy. Further, the module 1 

predicts the temperature and wind speed by adding noise to the value from Tpt+1/Wst+1 to Tpt+3/Wst+3, and 2 

the noises are positively correlated with the rainfall prediction error. For the material price forecast, the 3 

module adds noise to the value from Prt+1 to Prt+5; the closer the day, the smaller is the noise. 4 

Appendix C. Empirical optimal policy 5 

We select a static policy adopted by human managers in the real project in Beijing; we call it the 6 

empirical optimal policy. The main principle of the empirical policy is to advance the progressions 7 

steadily; i.e., the policy requests each type of worker to advance the progression of the corresponding 8 

construction activity at a speed of 1/3 floors per day. This principle theoretically avoids the precedence 9 

flow from becoming the critical flow (workers are delayed by the incomplete status of their previous 10 

activity in this case).  11 

According to the main principle, the number of work hours of each type of workers can be calculated 12 

with  13 

 pFZ pZA
1

3 pWH2A
tWH

 
= + 

 
. (C.1) 14 

For the materials, the quantities of rebars and concrete ordered per day are equal to the amount consumed, 15 

which can be calculated with  16 

 pFZ pZA
1

3 pS2A
tB

 
= + 

 
. (C.2) 17 

The formworks can be recycled, and therefore, the manager does not need to buy them on a daily basis. 18 

However, the manager must ensure that the stock of the formworks is higher than the value calculated 19 

with Eq. (C.2). If the stock falls below the value because of wear and tear, the manager will need to 20 

replenish 50% at one time. 21 
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