
1

Chen Yang, Zhe Zheng, Jia-Rui Lin*
Department of Civil Engineering, Tsinghua University, Beijing, China, 100084.

lin611@tsinghua.edu.cn (corresponding author)

Abstract. The layout design of pipelines is a critical task in the construction industry. Currently,
pipeline layout is designed manually by engineers, which is time-consuming and laborious.
Automating and streamlining this process can reduce the burden on engineers and save time. In this
paper, we propose a method for generating three-dimensional layout of pipelines based on deep
reinforcement learning (DRL). Firstly, we abstract the geometric features of space to establish a
training environment and define reward functions based on three constraints: pipeline length, elbow,
and installation distance. Next, we collect data through interactions between the agent and the
environment and train the DRL model. Finally, we use the well-trained DRL model to automatically
design a single pipeline. Our results demonstrate that DRL models can complete the pipeline layout
task in space in a much shorter time than traditional algorithms while ensuring high-quality layout
outcomes.

1. Introduction

In the construction industry, designing the layout of pipelines is a crucial task that involves
transporting electricity, natural gas, and water from one point to another. This design is typically
completed after determining the positions of the main components of the building. Currently,
due to the relatively late adoption of automation and intelligence in the construction industry,
pipeline layout design is still manually completed and highly relies on personal experience and
regulatory requirements. Because unexpected issues may arise during the construction process,
pipeline layout design often requires multiple rework designs, which consume significant
amounts of manpower, materials, and financial resources (Singh, Deng and Cheng, 2018).
Automated pipeline layout design can reduce the tediousness of this work and save time and
money. Although pipeline layout design is a complex spatial geometry problem, it can be
abstracted into a three-dimensional pathfinding and planning problem (Guirardello and Swaney,
2005), allowing for the automatic generation of pipelines. However, unlike general pathfinding
problems, pipeline layout design requires not only meeting geometric constraints but also
complying with numerous building code requirements. Consequently, finding the optimal
solution for pipeline layout is a challenging task that belongs to NP-hard problems (Yates,
Templeman and Boffey, 1984).

The most well-known and classic path-planning algorithm is the Dijkstra algorithm. However,
it is often too time-consuming to be practical for large-scale application scenarios due to the
NP-Hard nature of the problem. Path planning algorithms like Dijkstra and its derivatives
experience rapid increases in search time with task complexity and constraints, making them
impractical for complex tasks (Mukhlif and Saif, 2020). To address this, researchers have
focused on heuristic algorithms such as A* algorithm (Singh and Cheng, 2020; Tsai et al., 2022)
and fruit fly optimization algorithm (FOA) (Singh and Cheng, 2020) for pipeline layout design
and optimization. These algorithms use heuristic functions to accelerate the search while
balancing accuracy and efficiency to find better solutions faster. However, heuristic algorithms
lack generalization ability and require recalculations for each new scenario or modification to
building plans, which still consumes significant time.

42

2

In recent years, deep reinforcement learning (DRL) has matured and become increasingly
popular as an alternative solution to heuristic algorithms. DRL is a machine learning method
that combines deep learning (DL) and reinforcement learning (RL) (Arulkumaran et al., 2017).
Compared to traditional algorithms, the most significant advantage of DRL is its ability to train
a model with generalization capability through trial and error when tackling complex problems.
The well-trained model can be applied directly in subsequent tasks without the need for further
training, which saves a considerable amount of time. Additionally, DRL is more effective in
solving complex problems Although the training time of DRL increases when facing more
complex tasks, the time spent on applying the well-trained model is roughly the same
(Arulkumaran et al., 2017). Due to the advantages mentioned above, DRL has been extensively
utilized in path-planning applications, such as drone path-planning problems (Huang et al.,
2019; Bøhn et al., 2019). The primary objective of this paper is to investigate the potential
applicability of DRL for 3D pipeline layout design. Additionally, we will analyse and compare
its advantages and disadvantages with traditional methods.

2. Related Works

In the field of construction, pipeline layout design has gradually developed into a hot research
area. Building information modeling (BIM), by combining mathematical modeling methods
with collision detection technology, can intuitively analyse the position of complex node
locations and detect collisions between intersecting nodes. The detected results can be manually
corrected and have been widely applied in engineering. There is also research proposing a
pipeline automatic correction method based on collision detection technology (Hsu et al., 2020).
However, there is little work on pipeline layout design based directly on the geometric features
of space and obstacles, and this field is still in its early stages.

Pipeline layout design can be abstracted into a three-dimensional path planning problem.
Traditional algorithms for path planning include those based on graph theory searches, such as
the Dijkstra algorithm and the A* algorithm; those based on random samplings, such as the
rapidly-exploring random tree algorithm (RRT); and swarm intelligence algorithms, such as the
genetic algorithm (GA) and particle swarm optimization (PSO) (Gasparetto et al., 2015;
Aggarwal and Kumar, 2020). These algorithms have been successfully applied to solve
shortest-path problems, including ship electromechanical pipeline layout design (Jiang et al.,
2015), aviation engine pipeline layout design (Qu et al., 2016), and robot path planning (Ali et
al., 2020). In the field of construction, a novel approach utilizing PSO was proposed for pipe
routing design in building systems (Wang et al., 2016). This method entails the establishment
of a comprehensive three-dimensional building environment model, enabling the application of
PSO to optimize the path of the pipes. Singh and Cheng (2020) proposed a 3D multi-pipeline
layout design automation method based on BIM and heuristic search methods. Tsai et al. (2022)
proposed a field pipeline inspection and automatic coordination method based on augmented
reality (AR) and the A* algorithm, which allows on-site personnel to compare newly added
pipeline layout plans with existing pipelines. However, these algorithms still encounter
challenges related to repeated computations and time consumption when applied in various
scenarios. These limitations significantly restrict the potential of these algorithms to effectively
address problems with intricate constraints.

RL enables agents to learn optimal strategies autonomously by maximizing cumulative rewards
through trial-and-error interactions with the environment. RL has become a popular method in
path planning. The traditional Q-learning algorithm (Watkins et al., 1992) stores all state-action
pairs in a Q-table and searches for the optimal solution by referencing the Q-table. However, it
is limited by its computational complexity when representing high-dimensional states. The

43

3

introduction of Deep Q-Network (DQN) (Mnih et al., 2015) solves this problem. DQN is a
value-based DRL algorithm that approximates the Q-value function using a deep neural
network, allowing it to handle high-dimensional and discrete action spaces. After several years
of development, more powerful DRL algorithms have been proposed. Proximal Policy
Optimization (PPO) (Schulman et al., 2017) is one of the most widely applied algorithms. PPO
is a policy gradient-based DRL algorithm that avoids performance degradation caused by
overly large policy updates by limiting the magnitude of policy updates. The PPO algorithm is
simple to implement and performs well in various tasks, making it one of the mainstream
algorithms in the field of DRL. In the field of unmanned aerial vehicle (UAV) path planning,
DRL has been used to address potential threats in complex and dynamic environments (Bøhn
et al., 2019). This has implications for the practical application of DRL in the construction field.

3. Methodology

To address the above problem, this paper introduces the method of DRL, which aims to balance
precision, generalization, and time. The process is illustrated in Figure 1 and comprises three
modules: (1) establishing a training environment by abstracting building space models and
analysing constraints, (2) training and optimizing the DRL model, and (3) evaluating the quality
of the intelligently generated pipeline based on relevant indicators.

Figure 1: Methodology of the proposed method

3.1 Establishment of Training Environment

3.1.1 Abstraction of Building Space Model

Real building environments are complex and contain numerous building elements that are too
complex for model training and converging. Therefore, we analyse and retain the key elements
in the space that affect pipeline layout to construct the training environment. The key elements
retained include space size, positions and sizes of obstacles such as beams and columns, start
and end positions of pipelines, and pipeline diameters. To further simplify the training
environment, the space is rasterized into grids with a size of 10cm. On this basis, obstacles are

44

4

simplified into cubic blocks parallel to the coordinate axis, and pipeline sections are simplified
to 10cm x 10cm, occupying exactly one grid. This paper also defines a series of rules to ensure
that the generated space complies with real building standards. For instance, the space
dimensions must be between 5m-10m in length and width, with a height between 2.8m-4m.
Additionally, the main beam size should be larger than the secondary beam size, and pipeline
start and end points must be located on the wall.

Apart from the initialization function of the space, during training, this environment can also
be reset before each episode, and the key elements inside the space will be randomly generated.
This environment also has functions such as detecting collisions between the agent and
obstacles or walls and determining whether the agent has reached the endpoint.

3.1.2 Geometric and Design Constraints Analysis

This paper mainly considers one geometric constraint and three design constraints for building
pipeline layout design. The geometric constraint ensures that the pipeline does not collide with
obstacles or walls and does not pass through the interior of obstacles or walls. The three design
constraints include pipeline length, elbow, and installation distance. Short pipeline length is
considered primarily for economic reasons, as it reduces the material cost of the pipeline and
minimizes kinetic energy loss in the pipeline. The elbow angle should be as close to a right
angle as possible to allow for the use of general elbow fittings, and the number of elbows should
be minimized to further reduce kinetic energy loss. Installation distance refers to the pipeline's
proximity to walls or obstacles, which should be as short as possible for easy installation and
to reduce the length of fixing components. The reward function (described in Section 3.2.2) is
utilized to train the agent and enforce these constraints.

3.2 Model Training and Optimization

3.2.1 Deep Reinforcement Learning Method

Compared with the classic supervised and unsupervised learning problems in machine learning,
the biggest feature of RL is learning in interaction. The agent learns knowledge continuously
according to the rewards or punishments obtained during the interaction with the environment
and becomes more adapted to the environment. The learning paradigm of the agent is very
similar to the process of human learning. The training process of DRL can be described by a
quadruple <Observation, Action, State transition probability, Reward>. Observation is the
environment state that the agent can perceive, namely the observation space. Action represents
all the actions of the agent, namely the action space. State transition probability is the
probability that the agent makes a certain action, namely the model and policy. Reward
represents the reward or punishment corresponding to the action made in a certain state, namely
the reward function (Kaelbling, Littman and Moore, 1996). The biggest difference between
DRL and RL is that the model for action selection is a neural network. The core of applying
DRL to pipeline design lies in designing observation space, action space, and reward function
according to task needs, and selecting the appropriate algorithm and model. We present the
details of the design in the next section.

3.2.2 Task Design Details

Observation space design. A common method for designing the observation space is to
directly flatten the 3D matrix and input it into a deep neural network. However, in the training
environment of this paper, the 3D building space model experiences random changes in size

45

5

and obstacles. These changes can make it challenging to unify the input dimensions of the deep
network. Additionally, due to the large size of the space, the flattened matrix dimension can be
large, which may cause convergence issues. Therefore, this paper proposes a method that
incorporates key parameters of the observation space to meet the task requirements. These
parameters include relative coordinate, pipeline direction, start and end cube edge, angle, cross,
and distance, as shown in Table 1. Finally, these parameters are flattened and input into a deep
network for information fusion.

Table 1: Details of observation space design.

Action space design. After simplifying the pipeline, all elbow angles are 90 degrees. Therefore,
the designed action space includes six actions: up, down, left, right, forward, and backward,
representing movement in the positive and negative directions of the x, y, and z axes. To ensure
model accuracy, the agent can only move one grid at a time and cannot move multiple grids
simultaneously. To satisfy the geometric constraint that the pipeline cannot collide with
obstacles or walls, an action masking mechanism is used to prohibit the agent from outputting
actions that make it enter obstacles or walls directly. Previous studies have shown that action
masking results in faster convergence and better performance than punishing actions with a
certain size (Huang and Ontañón, 2022).

Reward function design Based on the previous geometric and design constraint analysis, this
section defines a series of reward functions. The value of the reward or penalty in the reward
function is determined through multiple artificial attempts, ultimately selecting a set of
parameters that best align with the actual pipeline layout. On one hand, for geometric
constraints, the maximum reward of is given for reaching the endpoint,
which is a one-time reward for a successful layout. However, setting only a success reward
means that the agent needs to go through more than a hundred steps to reach the endpoint and
get a reward. The problem of "sparse rewards" can make training very difficult. To solve this

46

6

problem, it is necessary to add denser rewards to guide the agent toward the endpoint. The agent
receives a reward of when it moves closer to the endpoint and punishment of

 when it moves further from the endpoint. On the other hand, for the three design
constraints, three more rewards are designed. The agent receives a basic reward of

 for every step it takes, preventing it from taking detours and reducing the length of the
pipeline. The agent receives a punishment of when it turns, reducing the number
of elbows in the pipeline. The agent receives a punishment of ,
where is set to 0.15 and is proportional to the distance to the nearest obstacle. The
weights of different rewards determine the final effect of the pipeline layout, and rewards that
are too large or too small will increase the difficulty of training and may even prevent
convergence.

Algorithm and model selection The PPO algorithm was selected as the policy optimization
algorithm for RL. Unlike standard policy gradient methods, which perform one gradient update
per data sample, PPO can perform small batch updates for multiple epochs. The PPO algorithm
belongs to the Actor-Critic method, which has two networks: one for generating policies (Actor)
and the other for evaluating policies (Critic). Both networks are constantly updated, and this
complementary training method is more effective than separate policy or value function
networks. In this paper, the Actor and Critic share the underlying network, and the Actor outputs
the probability of selecting each action while the Critic evaluates the current Actor.

3.3 Evaluation of the Proposed Method

Based on the constraints considered during training, the evaluation metrics for automatic
pipeline design are defined from four aspects, length, elbow, installation distance, and layout
time, respectively. Length refers to the total distance travelled by the agent from the starting
point to the endpoint. Elbow refers to the number of times the agent turns. Installation distance
is the average of the closest distance from the agent's position to a column, beam, or wall.
Layout time is the total time it takes for the algorithm to complete the layout from start to finish.
The values of these four indicators are all better when they are smaller. However, the three
design constraint indicators are mutually restrictive and cannot be reduced simultaneously, so
it is necessary to make trade-offs before evaluation.

4. Results and Discussion

4.1 Training Parameter Settings

The experiment was conducted using 1 Intel(R) Xeon(R) Silver 4215R 32-core CPU processor
for parallel sampling and 1 NVIDIA GeForce RTX 2080 Ti GPU for accelerating training.
Meanwhile, a parallel environment was created on 28 CPU cores to start sampling, with 28
agents collecting 8192 data samples each and feeding them into the GPU for training. The data
was split into 8 batches, and the neural network was updated with 1024 samples per batch. The
training process took approximately 2 hours to converge. In DRL, it is not suitable to use
networks that are too large or too deep because the network needs to be frequently used for
sampling and updating. Thus, a network with a depth of 4 layers and a hidden layer dimension
of 512 is adopted.

47

7

4.2 Training Process

In training, adjusting the observation space and reward function based on an understanding of
the task is more important than adjusting the hyperparameters related to DRL. On the one hand,
the reward function needs to be designed based on the requirements of the task to ensure that
the relative sizes of different rewards are appropriate, avoiding overly large or small rewards
that may cause abnormal behaviour in the agents. On the other hand, it is necessary to filter out
all relevant information required to meet the task requirements and pass it in a suitable unified
form to the observation space. The design of an excellent observation space or reward function
often plays a decisive role in the performance after convergence. Incomplete information or
imbalanced rewards can lead to experimental failure. The following section presents a
performance comparison of the optimal settings and some other settings during the training
process.

4.2.1 Influence of Observation Space

The angle information in the observation space plays an important role in reducing the number
of elbows and installation distances. By obtaining the current relative angular position of
obstacles, agents can anticipate events that will occur within a certain number of steps in the
future, thereby avoiding the selection of paths with more elbows or farther from the wall. If this
information is deleted, the agent's level of confusion will increase, and it will be unable to learn
the correct behaviour, as shown by the blue curve in Figure 2 (a). This is because the agent has
been punished for some actions but does not know the reason for the punishment.

4.2.2 Influence of Reward Function

The weight distribution of different rewards in the reward function directly determines the
effectiveness of the final pipeline layout. Therefore, the reward values need to be carefully
adjusted. In this paper, the pipeline layout of the converged model was visualized under
different reward functions, and the most realistic reward function was selected manually.
Taking the elbow penalty in the reward function as an example, in the optimal setting,

. When is modified, the punishment value is too large, and the agent
becomes timid, with a decreased desire to explore the endpoint and worse performance, as
shown by the blue curve in Figure 2 (b).

Figure 2: The Influence on Layout Success Rate of Different Observation Spaces and
Reward Functions (Converged at 2e7 Timesteps)

48

8

4.3 Comparison with Classic Methods

To evaluate the performance of the models trained by DRL, two classic algorithms, Dijkstra
and A* with the same constraints, are selected for comparison. Dijkstra algorithm is slower but
more accurate and better equipped to find optimal solutions, providing an approximate optimal
solution for design constraints. A* algorithm, on the other hand, is faster but may not always
find the optimal solution, producing more balanced results. Using the same random seed, we
added three constraints one by one (constraint 1: pipeline length, constraint 2: elbow, constraint
3: installation distance) to perform 100 layout designs.

The comparison results, as shown in Table 2, showed that for three or fewer constraints, the
performance of the DRL had comparable capabilities compared to that of Dijkstra and A*. It is
worth noting that as the number of constraints increased, the computing time of Dijkstra and
A* algorithms increased sharply, particularly after the addition of the third constraint. This
suggests that these two algorithms face time complexity challenges in more complex tasks. The
DRL algorithm's running time remains roughly the same under different constraints and
complexities, primarily related to the length of the pipeline path. For DRL, approximately 45%
of the time is used to obtain observations, while the remaining time is utilized for model
calculation, without the need for searches. This implies that the time efficiency of DRL will be
much greater than that of other algorithms in more complex tasks.

Table 2: Comparison of model performance.

Figure 3: Pipeline Layout Using Different Algorithms in the Same Scenario
(a) DRL, (b) /A*

49

9

Figure 3 displays the results of pipeline layout designs by DRL, Dijkstra, and A* algorithms in
the same typical scene. Among them, the pipeline layout results of Dijkstra and A* are the same.
Both layout results exist in reality, and typically, one is selected based on the length and type
of the pipeline.

5. Conclusion and future works

This paper proposes an automatic pipeline layout design method based on DRL. The method
consists of three main parts: building a training environment, model training and optimization,
and evaluating the intelligent generation of pipeline quality. In the current experimental results,
DRL has shown comparable capabilities to traditional methods in simple scenarios but exhibits
good potential in handling complex scenarios. The time taken by DRL to generate pipelines is
not significantly impacted by the complexity of constraints, whereas other algorithms show a
geometric growth trend. In addition, the current convergence performance may not represent
the upper limit of DRL methods. Due to the large number of hyperparameters in DRL and
multiple choices in the observation space, action space, reward function, and optimization
algorithm, it is not so easy to fine-tune all the parameters and there is still potential to further
improve the performance. Lastly, the training time of DRL in our case is about 2 hours, which
is acceptable and negligible for practical applications.

In the future, we plan to continue testing the performance of DRL under more complex
constraint conditions. As the task difficulty increases, the advantages of DRL may be fully
demonstrated. Additionally, multi-pipeline layout design is a research direction we intend to
pursue. We aim to apply multi-agent RL to multi-pipeline layout design to improve the overall
efficiency and quality of pipeline systems.

References

Singh, J. and Cheng, J.C. (2020)
72. Available at:

https://doi.org/10.1007/978-3-030-51295-8_6.

Tsai, L.- -based Automatic Pipeline Planning Coordination for on-site mechanical,

Available at: https://doi.org/10.1016/j.autcon.2022.104400.

arning attitude control of fixed-wing uavs using proximal

[Preprint]. Available at: https://doi.org/10.1109/icuas.2019.8798254.

Jiang, W.- co-evolutionary improved multi-ant colony optimization for ship multiple
70. Available at:

https://doi.org/10.1016/j.oceaneng.2015.04.028.

Journal of Aerospace Engineering, 29(3). Available at: https://doi.org/10.1061/(asce)as.1943-
5525.0000543.

produce smooth trajectory in grid-
https://doi.org/10.3389/fnbot.2020.00044.

Hsu, H.- -based system for resolving design clashes in building information
tion in Construction, 110, p. 103001. Available at:

https://doi.org/10.1016/j.autcon.2019.103001.

50

10

Watkins, C. J. and Dayan, P. (1992) Q-learning Machine learning, 8, pp. 279-292.

Mnih, V. et al. (2015) Human-level control through deep reinforcement learning, Nature News. Nature
Publishing Group. Available at: https://www.nature.com/articles/nature14236 (Accessed: April 10,
2023).

Schulman, J. et al. (2017) [1707.06347] proximal policy optimization algorithms - arxiv. Available at:
https://arxiv.org/abs/1707.06347 (Accessed: April 10, 2023).

Huang, H. et al. (2019
1121. Available at:

https://doi.org/10.1109/tvt.2019.2952549.

design to reduce manufacturing cost in one-
Group for Lean Construction [Preprint]. Available at: https://doi.org/10.24928/2018/0519.

Computers & Chemical Engineering, 30(1), pp. 99 114. Available at:
https://doi.org/10.1016/j.compchemeng.2005.08.009.

Yates, D. F., Templeman, A. B. and Boffey, T. B.

pp. 143 155. Available at: https://doi.org/10.1080/03052158408960635.

Mukhlif, F. and Saif, A. (2020) Comparative study on bellman-ford and Dijkstra algorithms. Available
at: https://www.researchgate.net/publication/340790429_Comparative_Study_On_Bellman-
Ford_And_Dijkstra_Algorithms (Accessed: April 10, 2023).

of Artificial Intelligence Research, 4, pp. 237 285. Available at: https://doi.org/10.1613/jair.301.

Hu
The International FLAIRS Conference Proceedings, 35. Available at:
https://doi.org/10.32473/flairs.v35i.130584.

Magazine, 34(6), pp. 26 38. Available at: https://doi.org/10.1109/msp.2017.2743240.

Motion and Operation Planning of Robotic Systems, pp. 3 27. Available at:
https://doi.org/10.1007/978-3-319-14705-5_1.

ions, 149, pp. 270 299. Available at:
https://doi.org/10.1016/j.comcom.2019.10.014.

Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) [Preprint].
doi:10.1109/cyber.2016.7574862.

51

