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Abstract 

In Chinese building codes, it is required that residential buildings receive a minimum number of hours 

of natural, direct sunlight on a specified winter day, which represents the worst sunlight condition in a 

year. This requirement is a prerequisite for obtaining a building permit during the conceptual design of a 

residential project. Thus, officially sanctioned software is usually used to assess the sunlight performance 

of buildings. These software programs predict sunlight hours based on repeated shading calculations, 

which is time-consuming. This paper proposed a multilayer perceptron-based method, a one-stage 

prediction approach, which outputs a shading time interval caused by the inputted cuboid-form building. 

The sunlight hours of a site can be obtained by calculating the union of the sunlight time intervals 

(complement of shading time interval) of all the buildings. Three numerical experiments, i.e., horizontal 

level and slope analysis, and simulation-based optimization are carried out; the results show that the 

method reduces the computation time to 1/84~1/50 with 96.5%~98% accuracies. A residential 

neighborhood layout planning plug-in for Rhino 7/Grasshopper is also developed based on the proposed 

model. This paper indicates that deep learning techniques can be adopted to accelerate sunlight hour 

simulations at the conceptual design phase. 
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sunlight, multilayer perceptron, artificial neural network, conceptual design stage, shading calculation, 

simulation-based optimization 

1. Introduction 

The urban population of China has increased from 314 million to 883 million over the past three 

decades [1]. Rapid urban expansion has increased the demand for residential buildings [2], which caused 

investment in residential development to reach 11.1 trillion RMB, equivalent to 9.7% of China’s GDP, 

in 2021 [3]. Local governments in China usually transfer neighborhood-scale land to real estate 

developers, who in turn build dozens of apartments that they sell to individual buyers [4]. To prevent 

profit-maximizing developers from excessively increasing the density of neighborhoods and to protect 

the health and well-being of residents [5, 6], “Standard for urban residential area planning and design” 

[7] and “Standard for assessment parameters of sunlight on building” [8] have been published to protect 
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citizens’ sunlight rights. 

The sunlight policy in China is a national mandatory policy; construction plans that violate the 

requirements in standards [7, 8] cannot obtain building permits. Unlike many other countries that adopt 

annual or quarterly metrics [9, 10], Chinese policy-makers require that residential buildings receive 

sufficient sunlight on a specific winter day. The solar altitude on this day is the lowest, which represents 

one of the worst sunlight conditions for the entire year. 

Enforcement of the Chinese sunlight policy is complicated and involves officially sanctioned 

software [11 - 13]. These simulators can not only predict the sunlight performance on sites but also allow 

simulation-based optimization of the layout of residential neighborhoods. The standard [8] also strictly 

defines the methodology of sunlight assessment, which relies on repeated shading calculation (SC). The 

recommended methodology is time-consuming (the computation time seems acceptable when 

conducting one sunlight simulation but is extremely long when conducting simulation-based 

optimization), and the cumulative-sky-based acceleration [14] is infeasible because the desired result is 

sunlight hours on a specific day. 

To improve the efficiency of conducting simulation-based conceptual design, this paper adopts deep-

learning technology for sunlight assessment under Chinese policy. The main contributions of this paper 

are proposing a one-stage method that skips repeated SC and only uses a multilayer perceptron (MLP) 

to predict sunlight hour heatmaps on sites with different layouts. Only using a MLP to predict 

neighborhood-scale sunlight heatmaps is extremely difficult, and the key to realize it is taking advantage 

of the characteristics of sunlight on a winter day, geometric invariance, and the idea of divide-and-

conquer. Another contribution is that we propose an approach of training while data generation, and this 

approach contains mechanisms to improve the accuracy and generalization ability of the MLP model by 

avoiding the production of duplicate and inefficient training data. We also develop a plug-in on 

Rhino7/Grasshopper to optimize the conceptual layout planning of residential neighborhoods with the 

MLP model. 

This paper mentioned ours and third-party software, and their roles are presented in Fig. 1. The 

remainder of the content is organized as follows. In Section 2, we review the techniques of SC-based and 

artificial neural network (ANN)-based building sunlight and daylight performance and solar irradiance 

simulation. Section 3 explain the features of Chinese sunlight assessment and conceptual residential 

neighborhood layout planning. In Section 4, we propose an SC-based sunlight analysis tool to generate 

data and train our MLP-based model; this tool is faster than others due to scenario-dependent code 

optimization, which is suitable for data generation with parametric modeling techniques. Section 5 

compares our MLP model with our SC-based tool and Nvidia Optix [15] application programming 

interface (API); we have our own format for geometric data of residential neighborhoods and only have 

the automatic modeling interfaces to our tool, Nvidia Optix [15], and Open3D [16]. Section 6 concludes 

this study and discusses its applications and limitations. Appendix A lists the translation of the most 

important sunlight regulations in standards [7, 8]. Appendix B validated our SC-based tool with the 

Ladybug [17] plug-in, Open3D [16] API, Glodon Sunlight Analysis Software [13] (an officially 

sanctioned software developed by another team of our company) API, etc. Appendix C and D are proofs 

and technique details. 
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Fig. 1. Roles of ours and third-party software in the paper 

2. Techniques review 

2.1. SC-based simulation 

SC techniques are critical to not only traditional sunlight hour prediction but also almost all physics-

based lighting simulations. Sunlight, daylight and solar irradiance simulations are most popular in the 

field of building performance simulation; the latter two consider light rays not only directly from the sun 

but also diffused by clouds. The results of solar irradiance simulation are also important to building 

operational energy [18, 19] and gains of building-integrated photovoltaics [20, 21] simulations. 

There are two kinds of SC algorithms: polygon clipping and pixel counting [22]. Polygon clipping 

algorithms [23, 24] output the sunlit fractions on surfaces based on the total sunlit areas, which is 

illustrated in Eq. (1), where the sunlit areas are calculated based on the Shoelace formula [25]. Although 

polygon clipping algorithms are used in the SC module of the famous energy simulator, i.e., EnergyPlus 

[26], these algorithms do not meet the demands of most building standards because they require heatmaps, 

i.e., sunlight hours of gridded sampling points. 

total shading area on the surface
sunlit fraction 1

total area of the surface
= −                      (1) 

Pixel counting algorithms can output heatmaps, where the value of a pixel represents whether the 

corresponding sampling point receives sunlight, daylight or irradiance. The pixel counting algorithm 

includes scan lines [27, 28], shadow maps [29], shadow volumes [30], and ray casting [31], and the 

difference among them is how to judge whether a sampling point is shaded. For the scan line algorithm, 

if a point is in the projected polygons of the shades, it is shaded; for the shadow map algorithm, if there 

is an obstruction in a similar position and closer to the light source than the point; for the shadow volume 

algorithm, if the point is in a shadow volume; and for the ray casting algorithm, if there is an obstruction 

in the ray between the point and the light source. 

The scan line algorithm is the simplest and fastest algorithm, but it is only for SC on planes. The 

other three algorithms can conduct SC for 3D scenarios, and the ray casting algorithm is the most popular 

among them. The ray casting algorithm is a part of the ray tracing technique [32], which is widely used 

in real-time photorealistic rendering [33]. Since people realized that graphics processing units (GPUs) 

can significantly accelerate ray tracing [34], releasing APIs for hardware acceleration has become a new 

standard on commercial GPU cards, e.g., Optix [15] is the ray tracing API for Nvidia’s GPUs. 

Because these SC algorithms, especially scan line and ray casting, are simple and clear, there are 

still scholars who conduct building solar irradiance performance simulations based on self-developed SC 

modules [35]. We also developed SC-based tools to generate training data and validate the trained MLP-
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based model because data generation with mainstream business sunlight simulators is slow and 

inconvenient. Our SC-based sunlight simulator is faster than others because we adopt the scan line 

algorithm and conduct scenario-dependent code optimization, and its accuracy is also validated; the 

detailed records are in Appendix B. 

2.2. ANN-based simulation 

The classification of ANN [36] is shown in Fig. 2. The simplest type of ANN is the single-layer 

perceptron, which only has one hidden layer. If an ANN has more than one fully connected hidden layer, 

it is called a deep neural network (DNN) [37]. MLP [38] is the simplest type of DNN, which has more 

than one hidden layer. Both single and multilayer perceptrons are par2par, i.e., whose inputs and outputs 

are both values. The convolutional neural network (CNN) [39] is pix2par, i.e., whose inputs are images 

and outputs are values, which is widely used in image classification and objective detection (from 

images). Long Short-Term Memory (LSTM) [40] is seq2seq, i.e., whose inputs and outputs are sequences, 

which is widely used in Natural Language Processing. The generative adversarial network (GAN) [41] 

is pix2pix, i.e., whose inputs and outputs are both images, which is widely used in AI-generated content. 

 

Fig. 2. classification of ANN 

Research on ANN-based sunlight hour prediction is rare, but many scholars have predicted daylight 

and solar irradiance metrics on buildings with ANN models. Table 1 shows that these ANN-based 

building performance simulators have at least one of the following two shortcomings compared with our 

MLP-based model: (1) they are only applicable for calculation points with few fixed locations or a fixed 

scenario, and (2) they adopt more complex ANN architectures. Specifically, Kazanasmaz et al. [42] used 

a three-layer MLP to predict daylight illuminance on fixed points in a room with any dimensions and 

orientation; Lorenz et al. [43] only use a single-layer perceptron to predict daylight autonomy metric, but 

it can only predict for fixed points and different rooms need different ANNs; Wang et al. [44] proposed 

two-layer and three-layer MLPs to predict five building performance metrics (including one daylighting 

and two sunlight metrics), which are applicable for dynamic layouts of the site but fixed points; Chen et 

al. [45] used an MPL-based model to predict the equivalent obstruction angle (an important daylight 

metric) on a point on building façade, the model is applicable for different skylines but the relative 

location between the calculation point and the inputted skyline is fixed; Kristiansen et al. [46] predicted 

the heatmaps of annual illuminance in a specified room with a five-layer MLP; He et al. [47] used a GAN, 

a complex architecture, to predict heatmaps of the annual daylight metrics on residential floorplans; Han 

et al. [48] used a 3D CNN to predict solar radiation on building facades; Liu et al. [49] generate images 

for luminance-based analysis with a CNN-based model; Le-Thanh et al. [50] use a three-layer MLP 

model to produce heatmaps of useful daylight illuminance in rooms, but the number of neurons of their 
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model is far more than ours. 

Table 1 Comparison among existing ANN-based prediction models and our model 

Reference Year Predicted metric Type of model Dynamic points Dynamic scenario 

[42] 2009 daylight MLP × √ 

[43] 2018 daylight single-layer perceptron × × 

[44] 2021 sunlight and daylight MLP × √ 

[45] 2021 daylight MLP × √ 

[46] 2022 daylight MLP √ × 

[47] 2021 daylight GAN √ √ 

[48] 2022 solar irradiance 3D CNN √ √ 

[49] 2020 daylight CNN √ √ 

[50] 2022 daylight MLP √ √ 

ours 2023 sunlight MLP √ √ 

3. Problem definition and analysis 

3.1. Problem definition 

The MLP-based model is used for sunlight assessment under the Chinese policy, and it can evaluate 

whether the sunlight hours of all residential buildings on a site satisfy the mandatory regulations of the 

standards [7, 8] and support optimizing the layout accordingly. The translation of the corresponding 

sunlight regulations in standards [7, 8] is listed in Appendix A. 

Generally, the codes require that the “sunlight duration time” on the “reference positions” of 

residential buildings during the “period of effective sunlight” must be greater than or equal to the 

“minimum sunlight duration time”. The “reference positions” correspond to the windowsill on the south 

façade of the residential building’s first floor, and the standards [7, 8] define that the “reference positions” 

are 0.9 meters above the first floor’s ground. Thus, architects usually calculate the heatmap of sunlight 

hours on the plane 0.9 meters above the ground of the site and check whether the values on the nearest 

points south of the south facades are greater than the “minimum sunlight duration time”, as shown in Fig. 

3 (a). The “period of effective sunlight” is a time interval on a specified winter day, which varies 

depending on the location of the site; it is 8:00 and 16:00 apparent solar time (AST) on January 20 th, 

2001, in Shanghai, and the sun trajectory of this period is shown in Fig. 3 (b). 

   

         (a)                                        (b) 

Fig. 3. Concepts of the Chinese sunlight assessment: (a) checking the “sunlight duration time” on the “reference 

positions”; (b) the sun trajectory of “period of effective sunlight” 
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The standard [8] also defines the process to calculate “sunlight duration time”, and we generalize 

its pseudocode, which is illustrated in Table 2. The start and end times are needed, which are 8:00 and 

16:00 (January 20th, 2001) in Shanghai. The recommended process needs to repeatedly conduct SC to 

calculate the sunlit matrix in Line 4, which is a Boolean matrix whose elements represent whether the 

sampling points are in the shadow (the values are equal to 0 if in the shaded area and 1 if in the sunlit 

area). It is obvious that both the accuracy and computation cost depend on the time step; both are lower 

if the time step is longer and higher if it is shorter. The standard [8] strongly recommends that the time 

step is equal to or shorter than 1 minute (a time step longer than 5 minutes is prohibited). The standard 

[8] explained that this is to ensure accuracy because a building may be overshadowed by multiple other 

buildings in the residential neighborhood, which causes a continuous sunshine interval of only a few 

minutes or less; a longer time step may lead to inaccurate simulation results. A 1-minute time step means 

480 SC, which causes one sunlight assessment to take a few seconds, and conducting simulation-based 

optimization (which contains thousands of assessments) is extremely time-consuming. Moreover, the 

cumulative-sky-based method [14] cannot be used to accelerate the process because the sun trajectory 

from 8:00 to 16:00 covers only a very small part of the sky dome, as shown in Fig. 3 (b). 

Table 2 Pseudocode for SC-based predicting sunlight hours 

Function sunlight-hours prediction(start time, end time, delta time): 

1 time ← start time, sunlight-hours ← 0 

2 while time < end time: 

3   direction of sunlight ← solar position prediction(time) 

4   sunlit ← solar shading calculation(direction of sunlight) 

5   sunlight-hours ←sunlight-hours + delta time × sunlit 

6   time ← time + delta time 

7 Return sunlight-hours 

3.2. Problem analysis 

The following three features of this problem make the MLP-based fast prediction approach possible: 

(1) a point is only shaded once by a building (we can take advantage of the idea of divide-and-conquer 

due to the fact); (2) many cases are equivalent due to geometric invariance, which simplifies the 

calculation; and (3) the time interval of a point shaded by a building is strongly related to their relative 

positions. 

3.2.1. Usage of divide-and-conquer 

Sunlight assessments in China are usually for obtaining the building permits of residential 

neighborhoods in the conceptual design phase, and architects prefer to use “boxes” (a box represents a 

residential building) for quick space planning [51]. Because all the buildings are cuboid-form and the 

sunlight simulation is for a single day, we find that any point on the site is only shaded once by a building; 

the proof is in Appendix C.1. We further proposed a fast union method to calculate the total shading hours 

of a point according to the start and end times of the point shaded by any of the buildings on the site. The 

pseudocode of the fast union method is illustrated in Table 3, and the proof of its correctness is introduced 

in Appendix C.2. ST and ET represent start and end times shaded, whose sizes are M × N, where M and 

N are the numbers of buildings and sampling points, respectively. STm, n and ETm, n mean the start and 

end times of the nth point shaded by the mth building before being sorted in Line 1, and they mean the 

start and end times of the nth point shaded for the mth times after being sorted. In Lines 2 to 4, the total 

shading hours equals the last end time (ETM) minus the first start time (ST1) of a point be shaded, then 

minus the total time of the points not be shaded between ETM and ST1. 



7 

 

Table 3 Pseudocode for the fast union method 

Function fast union method (ST, ET): 

1 ST ← sort in first dim(ST), ET ← sort in first dim(ET) 

2 total shading hours ← ETM − ST1 

3 for m in (1, 2, 3, ……, M − 1): 

4   total shading hours ← total shading hours − min(0, STm+1 − ETm) 

5 Return total shading hours 

3.2.2. Usage of geometric invariance 

 We find that the time interval of a point shaded by a building is unchanged under two types of 

geometric invariance transformation, i.e., translation and scaling, as shown in Fig. 4. Fig. 4 (a) illustrates 

the translation equivalence; the time interval of point (x0, y0, z0) shaded by building #A equals point (x0, 

y0, 0) caused by building #B if building #A is z0 higher than building #B and their sections are the same. 

Fig. 4 (b) shows the scaling equivalence; the time interval of point (x0, y0, 0) shaded by building #A 

equals point (2x0, 2y0, 0) caused by building #B if the length, width, and height of building #B are twice 

those of building #A. 

 

(a) 

 

(b) 

Fig. 4. Geometric invariance: (a) translation equivalence; (b) scaling equivalence 

Because of the translation equivalence, calculating the sunlight hours on points with any height can 

be transformed into the problem of calculation for points on the ground. Because of the scaling 

equivalence, the absolute size of buildings and coordinates of points can be ignored, and we only need 

information on the relative size and location. These two types of geometric invariance simplify the 

training data generation and simulation via the MLP-based model. 

3.2.3. Usage of the correlation of shading time and relative position 
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Appendix D.1 introduces an analytical method to calculate the shadow area of a building at any time 

(or sun location), and we can infer that the slenderer the building is, the less influence its section and 

orientation have on the shadow area. Thus, the time interval of a point shaded by a building mainly 

depends on its relative position if the building is not too flat. Fig. 5 (a) and (b) show the heatmaps of start 

and total time on the ground shaded by an example building (whose length, width, and height are 30, 21, 

and 48 meters, respectively) in Shanghai during the “period of effective sunlight”. If we create a polar 

coordinate system whose origin is south of the building, it is obvious that the start and total time of a 

point, (r, θ), shaded by the building is strongly related to its polar coordinate. Because of the scaling 

equivalence (explained in Section 3.2.2), r can be a dimensionless relative length. 

    

(a)                                     (b) 

Fig. 5. Start and total time of points on the ground shaded by a building in Shanghai during the “period of effective 

sunlight”: (a) heatmap of start time; (b) heatmap of total time 

4. Methodology 

Our approach is shown in Fig. 6, which includes data generation, training the MLP model and usage 

of the trained model. Fig. 6 (a) introduces the procedures of data generation while training. The 

architecture of the trained MLP model is illustrated in Section 4.1. The process of generating training 

data is illustrated in Section 4.2; we first generate the features via random parameterization and the 

mixed-scale and random-offset mechanisms; then, the features are fed to our SC-based tool to obtain the 

labels. Section 4.3 explains how to use a trained MLP to predict sunlight hours on sites, as shown in Fig. 

6 (b). 

 

(a) 
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(b) 

Fig. 6. Procedures of MLP-based sunlight assessment: (a) data generation and training; (b) utilization of the trained 

MLP model 

4.1. MLP architecture design 

4.1.1. Inputs and outputs 

An MLP model predicts the shading-time-interval caused by a cuboid-form building as Eq. (2) 

illustrated, and it directly calculates for sampling points on the ground, while points not on the ground 

can be handled via coordinate transformation because of the translation equivalence discussed in Section 

3.2.2. Section 3.2.1 discussed that a point is only shaded once by a building during the “period of effective 

sunlight” defined by Chinese standards [7, 8]; thus, we represent the shading time interval by its start 

time and length, and its end time can be calculated by Eq. (3). 

shading time interval MLP(site,building,sampling point)=                  (2) 

length of  time interval end time start time= −                        (3) 

Regarding the inputs, the latitude of the site, size and orientation of the building, and relative position 

between the sampling point and building are needed. The latitude of the site determines the solar 

trajectory during the “period of effective sunlight”. Because of the effects of translation and scaling 

equivalence discussed in Section 3.2.2, we represent the size of the building by its relative size rather 

than the absolute size. The relative length, width, and height are calculated by Eqs. (4) to (7). 

total size length width height= + +                            (4) 

relative length length total size=                         (5) 

relative width width total size=                          (6) 

 relative height height total size=                             (7) 

Section 3.2.3 illustrates that the shading time interval is strongly related to the relative position 

between the point and building in a polar coordinate system. However, sampling points of the sunlight 

heatmaps are from orthogonal grids in actual cases. We thus need both 2D local Cartesian and polar 

coordinate systems; points are sampled from the Cartesian coordinate system, while their polar 

coordinates are inputted to the MLP. We design these two coordinate systems as shown in Fig. 7. East is 

the x-direction and 0o-direction of the Cartesian and polar coordinate systems, respectively, and north is 

the y-direction and 90o-direction of the Cartesian and polar coordinate systems, respectively. The unit 

length in these two systems equals the total size in Eq. (4). The center of buildings must be in (0, 0.2) of 

the Cartesian system, i.e., (90o, 0.2) of the polar system. 
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Fig. 7. Cartesian and polar coordinate systems that define the orientation of the building and the relative position 

between the building and sampling points 

4.1.2. MLP architecture 

Our MLP has only three hidden layers, as shown in Fig. 8, with sizes of 16, 8, and 8. All activation 

functions in these networks are rectified linear units (ReLUs), and none of the hidden layers contain 

batch normalization units. 

 

Fig. 8. Architecture of the MLP-based sunlight hour prediction model 

4.2. Data generation and training 

Training data include features and labels, which correspond to the inputs and outputs of the MLP, 

respectively. The features include the latitude of the site, size and orientation of the building, and polar 

coordinates of the sampling points. The former two are generated by randomly sampling from intervals, 

and the polar coordinates are generated with mixed-scale and random-offset grids. The labels are shading 

time intervals calculated by our SC-based simulator. 

4.2.1. Random generation of latitude and size 

Although our model can handle any possible scenarios in theory, the optimal mixed-scale grids 

depend on the latitude of the site and slenderness ratios of the building. We thus set the intervals of the 

latitude and slenderness ratios in Table 4; if the values out the intervals, the grids may need to be 

redesigned to ensure the efficiency and accuracy of training. The latitude interval is from 25 to 35 degrees 

north, which has approximately 850 million people, accounting for 60% of China’s population [52]. We 

investigate the common slenderness ratios of residential buildings from our database and set the intervals 

accordingly. 
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Table 4 Interval of inputs for the MLP model 

Parameter Latitude Orientation Length : Height Width : Height Length : Width 

Interval [25o N, 35o N] [0o, 180o] [1 : 4.33, 1 : 1] [1 : 4.33, 1 : 1] [3.33 : 1, 1 : 3.33] 

4.2.2. Generation with mixed-scale and random-offset grids 

We design two mechanisms to sample points, i.e., mixed-scale and random-offset. Mixed-scale 

means sampling points form two grids with different scales. Fig. 9 shows an optimal grid size design 

under the conditions set in Table 4. The green box represents the coarse grid whose scale is 0.1, and its x 

and y coordinates (in the local Cartesian coordinate system) are between −3 and 3 and 0 and 3.2 (without 

random offset), respectively, because shadows of buildings must be in this area. The red box represents 

the fine grid whose scale is 0.05, and its x and y coordinates are between −1 and 1 and 0.2 and 1.2 (without 

random-offset), respectively, because the values of sunlight hours (or hours be shaded) for different 

sampling points have huge differences in this area. 

 

Fig. 9. Position of mixed-scale grid in the local Cartesian and coordinate system 

Since we cannot calculate for sampling points that are not gridded, we design the random-offset 

mechanism to increase the diversity of positions of sampling points. The sampling points must be gridded 

for the following two reasons: (1) data generation is based on our SC-based sunlight simulator, and it 

uses a scan line algorithm [27, 28], which is only for gridded sampling points; and (2) the sampling points 

are usually gridded in real projects. We thus set that the start point of a grid is not fixed, i.e., the x and y 

coordinates of the start point of the coarse grid are randomly selected between −3.05 and −2.95 and −0.05 

and 0.05, respectively, and between −1.025 and 0.975 and 0.175 and 0.225, respectively, for the fine grid. 

Moreover, only points in the valid sampling area (blue arc area in Fig. 9) can be considered as 

training data, whose θ and r coordinates (in the local polar coordinate system) are between 30o and 150° 

and 0.2 and 3.2, respectively. Shadows of buildings are almost always in the valid sampling area, and the 

proof is in Appendix C.3. We do not sample points in the region whose r coordinates are between 0 and 

0.2 because shadows of buildings are usually not in the region, while buildings are often in the region. 

Predicting sunlight hours for points under a building is not needed, and the values must be 0. Removing 

this region can also increase the continuity of the training data and further improve the accuracy of our 

model. 

4.2.3. Training 

We generate training data while training our model, and the amount of training data is not limited by 

storage space and can theoretically be infinite. The features of training data are generated in Section 4.2.1 

and 4.2.2, and we then input the features to our SC-based sunlight simulator to obtain the labels. This 
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simulator follows the methodology recommended by Standard [8] (described in Table 2), while the delta 

time is 1 minute. 

We generate data for 256 scenarios at once. There are approximately 1774 sampling points for each 

scenario, approximately 1072 points from the coarse grid and approximately 702 points from the fine 

grid. These training data were randomly put into 64 batches. 

The loss is defined by Eqs. (8) to (10), 

loss total time loss + start time loss=                             (8) 

2

gttotal time loss = ( )  TT TT−                           (9) 

2

gt gt

gt

2 ( ) , 0 
start time loss = 

0, 0

ST ST TT

TT

  − 


=

                     (10) 

where TT and TTgt are the total time of the sampling point shaded by the building predicted by the MLP 

and SC-based models, respectively, and ST and STgt are the start times of the sampling point shaded by 

the building, respectively. There are many sampling points not shaded by the building at all (TTgt = 0), 

which do not have the STs. The start-time losses are set to 0 for these points. 

We trained the MLP-based model on a single thread of an i7-11700K @3.60 GHz CPU because 

training on a CPU is faster than training on a GPU for such a small neural network. We saved the weights 

and bias of the model every 10 updates. If the weighted average loss over the last 40 updates increases, 

we determine that the model converges and stop training. Fig. 10 shows the losses during the training 

process, which took 36216 seconds. 

 

Fig. 10. Losses during the training process 

4.3. Usage of trained MLP 

4.3.1. Calculation for points above or below ground 

The MLP-based model directly predicts sunlight hours on ground, and it can also predict points 

above or below the ground. Because of the translation equivalence discussed in Section 3.2.2, the 

shading-time-interval on point (θ, r, z) caused by the building whose length, width, and height are l, w, 

and h is same as shading-time-interval on point (θ, r, 0) caused by the building whose length, width, and 

height are l, w, and h – z. Coordinate transformation is necessary to preprocess the inputted parameters, 

and the details are explained in Appendix D.2. 

4.3.2. Calculation for sites with multiple buildings 

As discussed in Section 3.2.1, we can handle the site with multiple buildings with the idea of divide 

and conquer. We need to call the MLP-based Model M times to simulate the site with M buildings. The 
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pseudocode is presented in Table 5. M calls of the MLP model calculate the matrices of start and end 

times shaded, i.e., ST and ET, whose sizes are M × N, where N is the number of sampling points on the 

site. In Line 5, the values of STm and TTm are revised according to the rules described in Table 6, where 

STm and TTm represent the start and total time shaded by the mth building, respectively. In Line 7, the fast 

union method proposed in Section 3.2.1 (its pseudocode is illustrated Table 3) calculates the heatmap of 

the sunlight hours based on ST and ET. In Line 8, we find the points under the buildings and set their 

values to 0 (cannot receive sunlight at all), and the scan line algorithm is used to determine whether 

points are under buildings. 

Table 5 Pseudocode for predicting sunlight hours on a site with the MLP-based model 

Function sunlight-hours prediction(MLP, building size, points on site): 

1 ST ← 0, ET ← 0 

2 for m in (1, 2, 3, ……, M): 

3   points on local system, relative building sizem ← coordinate transform(building sizem, points on site) 

4   STm, TTm ← MLP(relative building sizem, points on local system) 

5   STm, TTm ← post revise(STm, TTm) 

6   ETm ← STm + TTm 

7 sunlight hours ← fast union method(ST, ET) 

8 sunlight hours[points under buildings] = 0 

9 Return sunlight hours 

Table 6 Rules to revise ST and TT 

Rule #1 if TT < 0: TT ← 0 

Explain Total time of a point be shaded cannot be less than 0 hour. 

Rule #2 if TT > 8: TT ← 8 

Explain Total time of a point be shaded cannot be more than whole time interval for analysis (8:00–16:00). 

Rule #3 if ST < 0: ST ← 0 

Explain Start time of a point be shaded cannot be earlier than 8:00 (AST). 

Rule #4 if ST + TT > 8: ST ← 8 − TT 

Explain End time of a point be shaded cannot be later than 16:00 (AST). 

5. Results 

As shown in Fig. 11, we validate the computation time and precision of the MLP-based model by 

comparing it with our SC-based sunlight simulator and Nvidia Optix [15]. Our SC-based tool is validated 

by many third-party software programs, e.g., Ladybug [17] and Open3D [16], and the details are in 

Appendix B, which proves that our SC-based tool is accurate and faster. Table 8 illustrates the setup of 

the test cases, all of which are in Shanghai, where the latitude is 31o 15’ N. The analysis duration is 

8:00~16:00 January 20th, 2001 (AST), because it is the “period of effective sunlight” in Shanghai 

according to Standard [7]. The position of the calculated points is 0.9 meters above the ground or slopes, 

which is the “reference position” defined by Standard [7]. 
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Fig. 11. Approach to validate our MLP model 

Table 8 Setup of the test case 

Site Duration Position of calculated points 

Shanghai (31o 15’ N) 8:00~16:00 January 20th, 2001 (AST) 0.9 meters above the ground or slopes 

5.1. Horizontal level analysis 

5.1.1. One building 

We test 256 randomly generated scenarios and sampling points from the coarse grid with a 0.02-

sampling interval (48000 sampling points for each scenario) and compare the results with our SC-based 

sunlight simulator. The average computation times and precisions are illustrated in Table 9. The MLP 

model significantly reduces the computation cost. Considering that it is possible to load the model only 

once and then use it an unlimited number of times, the MLP-based model can reduce the computation 

time by up to 1/50. The precision loss is acceptable, and the mean absolute errors (MAEs) for the total 

and start times are 1.375 and 5.717 minutes, respectively. Fig. 12 shows examples of the difference 

between the heatmaps of total and start time calculated by our SC-based and MLP-based models. 

Table 9 Comparison between our MLP-based model and the SC-based tool 

 Model loading time Calculation time Total time Precision of TT Precision of ST 

(ours) SC tool  0.308s 0.308s as Ground Truth as Ground Truth 

(ours) MLP 0.001 s 0.00606s 0.00706s MAE: 1.375 minutes MAE: 5.717 minutes 

  

(a)                                          (b) 
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(c)                                           (d) 

Fig. 12 Total and start time shaded by a cuboid-form building: total time calculated by our (a) SC-based tool and 

(b) MLP-based model; start time calculated by our (c) SC-based tool and (d) MLP-based model 

5.1.2. Site with multiple buildings 

We test the MLP-based model on a site with multiple buildings, which is a part of the early design 

of a residential neighborhood. The east‒west and north‒south lengths of the site are 150 and 160 meters, 

respectively, and the height of the buildings on the site is 45 meters. Fig. 13 shows the difference between 

the heatmaps of total time being shaded (the sunlight hours are 8 hours minus the total time being shaded) 

calculated by our SC-based and MLP-based model; these heatmaps are similar. Table 10 shows that the 

MLP-based model reduces the computation time by 1/77, while the MAE of the predicted total time to 

be shaded is 7.581 minutes, and the accuracy is 98.0%. 

    

(a)                                       (b) 

Fig. 13 Total time shaded on the site calculated by our (a) SC-based tool and (b) MLP-based model 

Table 10 Comparison between our MLP-based model and the SC-based tool 

 Model loading time Calculation time Total time Precision of TT Accuracy 

(ours) SC tool  2.417s 2.417s as Ground Truth  

(ours) MLP 0.001 s 0.0301 s 0.0311 s MAE: 7.581 minutes 98.0% 

5.2. Slope analysis 

This experiment tries to prove that the MLP-based model can predict sunlight hours for 3D points. 

Because we focus on sunlight assessment on the horizontal plane and our SC-based simulator is not 

available for 3D calculation, we did not collect the elevation data of real sites. We design a virtual site 

for this test, which is steeper than most real sites. The site is shown in Fig. 14, where a building is located 

in a plane whose elevation is 0 meters. The length, width, and height of the building are 20, 20, and 60 
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meters, respectively. The heights of all vertices of the slopes are shown in Fig. 14. 

 

Fig. 14 Test site with slopes 

We choose the Optix API of Nvidia to compare with our MLP-based model, which adopts a ray-

casting-based approach for SC. This API is run on an Nvidia RTX 3080 GPU, while our model is run on 

a single thread of an i7-11700K @3.60 GHz CPU. The average computation times and precisions are 

illustrated in Table 11. The MLP model reduces the computation time by 1/84; the MAEs for the total 

and start times are 1.918 and 6.459 minutes, respectively. Fig. 15 shows the difference between the 

heatmaps of total and start time calculated by the Optix and the MLP-based model. 

   

(a)                                          (b) 

 

(c)                                            (d) 

Fig. 15 Total and start time shaded by a cuboid-form building: total time calculated by (a) Optix of Nvidia and (b) 

our MLP-based model; start time calculated by (c) Optix of Nvidia and (d) our MLP-based model 

Table 11 Comparison between our MLP-based model and Optix of Nvidia 

 Model loading time Calculation time Total time Precision of TT Precision of ST 

(Nvidia) Optix  0.931 s 0.931 s as Ground Truth as Ground Truth 

(ours) MLP 0.001 s 0.0101 s 0.0111 s MAE: 1.918 minutes MAE: 6.459 minutes 

5.3. Simulation-based optimization 
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The MLP-based model can significantly decrease the computation cost with little precision loss, as 

shown in Section 5.1 and 5.2. This section investigates whether the small precision loss affects the 

application of our model as a proxy model. Our MLP-based model is tested in a case of simulation-based 

optimization, and its outputs contribute to the objective function. The decision variables are the location, 

orientation, and size of a building, as shown in Fig. 16, and the purpose is to maximize the total floor 

area (or volume) of the building without violating the mandatory sunlight regulation [7]. 

 

Fig. 16 Optimization problem: placing a building inside the purple box 

Table 12 illustrates the ranges of the decision variables; the building is located by its westernmost 

and southernmost points, and its size and orientation are also determined. The objective function is 

defined in Eq. (11), whose details are illustrated in Appendix D.3. We use our MLP-based and SC-based 

models to calculate the sunlight hour score as a comparison. A genetic algorithm [53] is adopted to solve 

the problem, where the number of generations is 512, and the population of each generation is 64. 

Table 12 Range of decision variables in the optimization problem 

Variable 
x-coordinate 

(westernmost point) 

y-coordinate 

(southernmost point) 

Length Width Height Orientation 

Minimum 0 m 30 m 21 m 18 m 30 m -30o 

Maximum 7.5 m 80 m 42 m 30 m 60 m 30o 

Interval 0.5 m 0.5 m 3 m 3 m 3 m 5o 

objective score total floor area score  direct-sunlight-hour score=                  (11) 

We first solve the problem 10 times with the MLP-based objective function, and the 10 solutions are 

exactly the same; we then solve it with the SC-based objective function, and the 10 solutions are exactly 

the same as well. Table 13 illustrates the solutions and corresponding scores and the average computation 

time. The error of the objective score calculated based on the MLP model is only 3.5% (the score 

calculated by the SC-based tool is considered as a ground truth), but the average computation time is 

reduced by 1/54. Fig. 17 shows that both of the solutions of the SC-based and MLP-based objective 

functions satisfy the sunlight regulations required by Standard [7] (the heatmaps are both calculated by 

the SC-based tool). 

Table 13 Comparison between our MLP-based model and the SC-based tool 

 Computation time Solution Score (MLP) Score (Scan line) Accuracy 

(ours) SC tool 7261.3 s [0m, 42 m, 27 m, 30 m, 60 m, 0o]  2.557  

(ours) MLP 135.5 s [0m, 42 m, 30 m, 30 m, 60 m, 0o] 2.615 2.526 96.5% 
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(a)                                         (b) 

Fig. 17 Solutions of the optimization problem: (a) SC-based objective function, (b) MLP-based objective function 

6. Conclusion and Discussion 

6.1. Conclusion 

Buildings receiving enough hours of sunlight is a mandatory regulation for Chinese residential 

neighborhoods design. Chinese architects and city planners use officially sanctioned solar simulators to 

conduct simulations and simulation-based optimizations to ensure that their designs do not violate the 

standards. These simulators rely on repeated solar shading calculations (SC), which is time-consuming, 

especially for simulation-based optimization. 

To avoid repeated SC, this paper proposes a one-stage method to predict sunlight hours under 

Chinese policy. We take advantage of the following three features of Chinese sunlight assessment: (1) a 

point is only shaded once by a building; (2) translation and scaling equivalence; and (3) strong 

correlation between the shading time and relative position. A simple MLP network is designed to 

predict the heatmaps of the sunlight time interval (complement of shading time interval) caused by a 

single building. With coordinate transformation and our proposed fast time-interval union method, sites 

with multiple buildings can also be simulated. 

The MLP model is trained by our proposed SC-based sunlight simulator, whose speed and accuracy 

are validated by many other third-party simulators. mixed-scale and random-offset grid mechanisms, and 

random parameterization are proposed to generate the features of training data, and the features are 

inputted to the SC-based simulator to obtain the labels. 

The computation time and precision of the MLP-based model are validated on the horizontal level, 

slope analysis, and simulation-based optimization. Regarding the horizontal level analysis, sites with a 

single building are first tested; the computation time is reduced by 1/50, and the MAE for the total time 

to be shaded is 1.375 minutes. A test on a real design of a site with multiple buildings is then conducted; 

the computation time is reduced by 1/77, and the MAE for the total time to be shaded is 7.581 minutes 

(98% accuracy). Regarding the slope analysis, a test is carried out on a virtual site with four slopes; the 

computation time is reduced by 1/84, and the MAE for the total time to be shaded is 1.918 minutes. 

Regarding the simulation-based optimization, the MLP model is used to calculate the objective score, 

whose error is only 3.5% but reduces the computation time by 1/54, and the solution is almost exactly 

correct if the proxy objective function is used based on the MLP model. 

Our model proves that deep learning and data-driven techniques can be adopted during sunlight 
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hours and accelerate simulations, which will improve the efficiency for architects and city planners and 

ultimately contribute to improving the performance of buildings. The MLP model was used in practice; 

a Rhino 7/Grasshopper plug-in was developed based on it. As shown in Fig. 18, this plug-in is for 

automatic residential neighborhood layout planning, which places a row of buildings while checking the 

compliance of the sunlight regulations. 

 

Fig. 18 Automatic residential neighborhood layout planning plug-in based on the MLP model 

6.2. Discussion 

The limitations of our approach are that it may only apply for assessment under the Chinese sunlight 

policy and in the conceptual design phase. The Chinese sunlight assessment calculates sunlight hours in 

a specified day with the worst sunlight condition in a year; we cannot take advantage of the feature that 

a point is only shaded once by a building for annual or quarterly sunlight simulation, which means that 

it is difficult to propose such a simple ANN architecture to predict the sites’ heatmaps in these cases. 

Moreover, our model addresses cuboid-form buildings, which limits its application to the conceptual 

design phase. Buildings with complex forms may not satisfy translation or scaling equivalence. 

In the future, we would like to further optimize the proposed method to make it applicable in general 

sunlight simulation cases. For example, we will attempt quarterly or annual sunlight hour prediction and 

more complex architectural forms. We may further adopt the idea of divide and conquer and/or try novel 

coordinate transformation to reach these goals. On the other hand, we will use deep-learning techniques 

in other building simulation fields. We may propose deep-learning-based proxy models for simulations 

of the daylight performance or energy consumption of buildings. 
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Appendix A. Translation of sunlight regulations in Chinese standards 

A.1. Standard for assessment parameters of sunlight on building [8] 

Regulation 2. 0. 3: “reference day of sunlight assessment” is the specified day to measure and 

calculate “sunlight duration time” on buildings. 

Regulation 2. 0. 4: “period of effective sunlight” is the time interval determined by the sun altitude 

and azimuth, intensity of solar radiation of “reference day of sunlight assessment”, expressed in terms 

of apparent solar time. 

Regulation 2. 0. 5: “reference position for sunlight assessment” is the calculation position on 
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corresponding buildings and site for normalizing the calculation process of “sunlight duration time”. 

Regulation 2. 0. 6: “sunlight duration time” is the length of a continuous time interval or cumulative 

length of multiple time segments receiving sunlight at the “reference position for sunlight assessment” 

during the “period of effective sunlight”. 

Regulation 2. 0. 7: “standard of sunlight on buildings” means the minimum sunlight duration time 

of sunlight on buildings or site during the “period of effective sunlight” of “reference day of sunlight 

assessment”, which is affected by the climate zone of the site, population of the city and the function of 

the buildings. 

Regulation 2. 0. 8: “reference year of sunlight assessment” is the year to provide sun trajectory data 

for sunlight assessment. 

Regulation 5. 0. 1: the setup of sunlight assessment should obey the following regulations: (1) the 

“reference year of sunlight assessment” should be 2001; (2) the scale of sampling grid should be 

reasonably determined according to the calculation method and the scope of calculation area, 0.3~0.6 

meters for window, 0.6~1.0 meters for building, and 1.0~5.0 meters for site is appropriate; (3) it is 

inappropriate that time step more than 1 minute. 

Regulation 5. 0. 5: Sunlight assessment should adopt apparent solar time, the time period can be 

counted cumulatively, and the minimum continuous segment that can be counted should not be less than 

5 minutes. 

Explanation of Regulation 5. 0. 5: Due to the increasing density of buildings in cities, a building 

may be shaded by multiple other buildings, its sunlight period is discontinuous, and a sunlight time 

segment may be a few minutes or less. Do not count segments less than 5 minutes due to the following 

reasons: (1) very short time segments have poor sunlight quality; (2) the bias between simulated and real 

“sunlight duration time” is usually 3~5 minutes. 

A.2. Standard for urban residential area planning and design [7] 

Regulation 4. 0. 9: The spacing of residential buildings should follow the regulations in Table A.1 

(major cold and winter solstice are specified date on the Chinese lunisolar calendar; they are January 20th 

and December 22nd in 2001, respectively; Shanghai belongs to the III climatic region [54]). 

Table A.1 Standard of sunlight on residential buildings 

Climatic region for architecture I, II, III, VII IV V, VI 

Population of the city (thousand) ≥ 500 < 500 ≥ 500 < 500 unlimited 

Reference day of sunlight assessment major cold winter solstice 

Sunlight duration time (hour) ≥ 2 ≥ 3 ≥ 1 

Period of effective sunlight (apparent solar time) 8:00~16:00 9:00~15:00 

Reference position for sunlight assessment the plane of windowsill on the first floor 

* the plane of windowsill on the first floor means the outer walls 0.9 meters above the ground of the first floor 

Appendix B. Validation of our SC-based sunlight simulator 

We developed an SC-based sunlight simulator, which is used to train and validate our MLP-based 

model. The accuracy of our SC-based simulator is validated by Ladybug [17], Open3D [16], and Glodon 

Sunlight Analysis Software [13]. Our SC-based sunlight simulator is also faster than others because of 

the following two reasons: (1) our simulator is specified for cuboid-form buildings and gridded sampling 

points, and we conduct scenario-dependent code optimization; (2) our simulator adopts a scan line 

algorithm [27, 28], while others adopt a ray casting algorithm [31]. 

The results of the accuracy comparisons are listed in Table B.1. We first build a node graph with 

Ladybug in Grasshopper, as shown in Fig. B.1, and export its results for comparison; Fig. B.2 shows an 
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example of the heatmap calculated by Ladybug and our SC-based simulator. We next compared our 

simulator with Open3D, which is an open sourced software. Glodon Sunlight Analysis Software was 

developed by another team of our company, and they finally provided us with an API for the comparison. 

Table B. The results of accuracy comparison 

Compared software MAE Remark 

Ladybug 1.75 minutes The sampling solar times are not exactly the same as ours 

Open3D 0.00 minutes All inputs for simulation are exactly the same as ours 

Glodon Sunlight Analysis Software 1.72 minutes The sampling points are not exactly the same as ours 

 

Fig. B.1 Node Graph for sunlight simulation in Ladybug/Grasshopper 

   

(a)                                         (b) 

* Ladybug’s colormap is continuous, while ours is discrete, which makes the rendered images look slightly 

different 

Fig. B.2 Total time spent shaded on the site calculated by (a) Ladybug and (b) our SC-based tool 

We validate the calculation speed of our SC-based simulator by comparing it with others, as shown 

in Table B.2. The metric is computation time per time per sampling point. The result proves that our 

simulator is significantly faster than others. Moreover, the MLP-based prediction model is faster than 

our SC-based simulator, which shows its outstanding capabilities in terms of computation speed. 

Table B.2 Comparison among our shadow analysis algorithms and others 
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Number of 

analysis times 

Number of 

sampling points 

Total computation 

time 

Computation time per time 

per point 

Ladybug 4.81 × 102 4.8 × 104 2.06 × 101 s 8.92 × 10-7 s 

Glodon sun analysis 

software 
4.8 × 101 1.12 × 105 2.61 × 101 s 4.85 × 10-6 s 

Wang et al. [35] 4.75 × 103 2.24 × 103 3.60 × 104 s 3.38 × 10-3 s 

MOOSAS [55] 1.2 × 101 2.76 × 102 1.55 × 10-1 s 4.68 × 10-5 s 

Open3D 4.8 × 102 4.8 × 104 1.45 × 100 s 6.29 × 10-8 s 

Optix 4.8 × 102 4.8 × 104 9.31 × 10-1 s 4.04 × 10-8 s 

Ours SC-based tool 4.8 × 102 4.8 × 104 3.08 × 10-1 s 1.34 × 10-8 s 

Appendix C. Proofs 

C.1. Proof: any point on the site is only shaded once by a cuboid-form building during the “period 

of effective sunlight” 

It is difficult to prove this proposition analytically; thus, we indicate it with numerical experiments. 

The “period of effective sunlight” for Shanghai is 8:00~16:00 on January 20th, 2001 (AST) [7], and the 

size and orientation of buildings are defined in Table 4. We randomly generated 10000 scenarios and 

randomly sample points in the coarse grid (see Fig. 9). We conducted shading calculations for these 

points, and the delta time is 1 minute. Only 177 out of 19200000 points are shaded by a cuboid-form 

building more than once, i.e., the incidence is less than 0.001%. 

C.2. Proof: Correctness of the fast union method described in Table 3 

Define that a point shaded by a building is an event, and the sunlight hours are the total time of at 

least one event happening, which can be calculated by Eq. (C. 1). 

time of at least one event happen time when last event end time when first event start time of no event happen= − −  (C. 1) 

Fig. C.1 shows how to calculate the total time of no event happening. We need to first sort all the 

start and end times. STi and ETi represent the ith start and end event; although they are usually different 

events (the 2nd start event is #C, while the 2nd end event is #B in Fig. C.1), ETi is always later than STi, 

which can be proven by mathematical induction. If STi+1 > ETi, there is a time interval of no event 

happening, and its length is ETi − STi+1 (the 3rd start event is later than the 2nd end event in Fig. C.1). If 

STi+1 ≤ ETi, all times between STi and ETi+1, at least one event happens (all times between ST1 and ET2, 

at least one event happens in Fig. C.1). 

 

Fig. C.1 Proof of the fast union method 

C.3. Proof: Shadows of buildings are almost always in the valid sampling area under the setup in 

Section 4 

We also randomly generated 10000 scenarios and found that 4525061 out of 4765438 shaded points 

are in the valid sampling area, i.e., the ratio is approximately 95%. 

Appendix D. Technical details 

D.1. Fast analytical method for shadow area calculation 
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Fig. D.1 illustrates a fast analytical method to calculate the shadow area of a cuboid-form building 

under a specified solar position. The altitude and azimuth of the sun are alt and azi, respectively (the 

positive azimuth direction is east). The height of the building is H, and its bottom section is ABCD, as 

shown in Fig. D.1 (a). We first translate ABCD H∙cot(alt)∙cos(azi) westward and H∙cot(alt)∙sin(azi) 

northward (sun is always in the northern sky during the calculation period required by the Chinese 

standard [7]), and A’B’C’D’ is obtained as shown in Fig. D.1 (a). We then connect AA’, BB’, CC’, and 

DD’, and the shadow area is the purple shaded area in Fig. D.1 (b). 

   

            (a)                                               (b) 

Fig. D.1 Fast analytical method to calculate shadow area: (a) building section translation; (b) shadow area 

D.2. Coordinate transformation before 3D point sunlight prediction 

Assume that the length, width, height, and orientation of building A are L, W, H, and φ, respectively, 

and the latitude of the building is lat. To calculate its sunlight time interval on the point (X, Y, 0), which 

means that the points are X meters east and Y meters north of the center of the building and are on the 

ground, we first need to calculate the relative length, width, and height based on Eqs. (4) to (7), 

S L W H= + +                                     (D. 1) 
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and the local Cartesian and polar coordinates of (X, Y, 0) can be calculated according to the definitions 

(see Fig. 7). 
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The sunlight time interval can be calculated by calling MLP(lat, rL, rW, rH, φ, rθ, rr). 

According to the translation equivalence discussed in Fig. 4 (a), the sunlight time interval on point 
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(X, Y, Z), i.e., a point Z meters above (X, Y, 0), caused by building A equals the sunlight time interval on 

(X, Y, 0) caused by building B, whose length, width, height, and orientation are L, W, H − Z, and φ, 

respectively. We can also calculate the relative length, width, and height of building B based on Eqs. (4) 

to (7), 

1
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where the coefficient η is illustrated in Eq. (D. 13) 
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and the local Cartesian and polar coordinates can be revised accordingly, 
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The sunlight time interval can be calculated by calling MLP(lat, r’L, r’W, r’H, φ, r’θ, r’r). 

D.3. Detailed objective function in the case of simulation-based optimization 

According to Eq. (11), the objective score equals the total floor area score multiplied by the sunlight 

hour score, where the expression of the total floor area score is shown in Eq. (D. 18). 

total floor area score
42 30 60

L W H 
=

 
                            (D. 18) 

where L, W, and H are the length, width, and height of the placed building, respectively, and 42, 30, and 

60 meters are the maximum values of L, W, and H, respectively. Note that the total floor area of the 

building is proportional to its volume if the floor height is a constant. 

The sunlight hour score equals the product of two scores, as shown in Eq. (D. 19), 
st nddirect sunlight hour score min(1  sunlight score, 2) min(2  sunlight score, 2)=         (D. 19) 

where the 1st and 2nd sunlight scores correspond to the placed building and the three most northwest 

buildings in Fig. 15. We need to reduce the hours of the placed building shaded by the south buildings 

and the north buildings shaded by the placed one simultaneously. The sunlight scores are defined in Eq. 

(D. 20), 

st nd

check points

0,direct-sunligt-hours of any check point less than 1.75 hours

direct-sunligt-hours 2 hours
 1 /2  sunlight score

0.25 hours
, elsewise

number of check points




−
= 



        (D. 20) 
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where the check points are the sampling points outside the buildings and closest to their south facades. 
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