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Abstract: 

    Interpreting regulatory documents or building codes into computer-processable formats is essential 

for the intelligent design and construction of buildings and infrastructures. Although automated rule 

interpretation (ARI) methods have been investigated for years, most of them are highly dependent on 

the early and manual filtering of interpretable clauses from a building code. While few of them 

considered machine interpretability, which represents the potential to be transformed into a computer-

processable format, from both clause- and document-level. Therefore, this research aims to propose a 

novel approach to automatically evaluate and enhance the machine interpretability of single clauses and 

building codes. First, a few categories are introduced to classify each clause in a building code 

considering the requirements for rule interpretation, and a dataset is developed for model training. Then, 

an efficient text classification model is developed based on a pretrained domain-specific language model 

and transfer learning techniques. Finally, a quantitative evaluation method is proposed to assess the 

overall interpretability of building codes. Experiments show that the proposed text classification 

algorithm outperforms the existing CNN- or RNN-based methods, by improving the F1-score from 

72.16% to 93.60%. It is also illustrated that the proposed classification method can enhance downstream 

ARI methods with an improvement of 4%. Furthermore, analysis of more than 150 building codes in 

China showed that their average interpretability is only 34.40%, which implies that it is still difficult to 

fully transform an entire regulatory documents into computer-processable formats. It is also argued that 

the interpretability of building codes should be further improved both from the human side (considering 

certain constraints when writing building codes) and the machine side (developing more powerful 

algorithms, tools, etc.)..  
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1 Introduction 

The architecture, engineering, and construction (AEC) industry is undergoing a significant 

transformation from traditional labor-intensive methods to digital, automated, and smart methods (Wu 

et al., 2022; Liao et al., 2021). Building regulatory documents are used to guarantee the safety, 

sustainability, and comfort of the entire lifecycle of a built environment. Thus, interpreting regulatory 

documents or building codes into computer-processable formats is essential for the intelligent design 

and construction of buildings and infrastructures (Wu et al., 2022a). However, the existing codes are 

still written in natural language and mainly read and utilized by domain experts; thus, these codes are 

difficult for computers to automatically understand, process, and analyze (Ismail et al., 2017). Therefore, 

automated rule interpretation methods that aim to automatically interpret regulatory texts into a 

computer-processable format have been studied by many researchers for automated compliance 

checking and even intelligent design (Eastman et al., 2009; Ismail et al., 2017; Sobhkhiz et al., 2021; 

Fuchs, 2021). 

Many studies have focused on automated rule interpretation tasks based on natural language 

processing (NLP) (Fuchs, 2021). For example, information extraction and transformation have been 

widely studied by many researchers (Zhang & El-Gohary, 2015; Zhou et al., 2022; Zhang & El-Gohary, 

2021a). In information extraction and transformation, the words and phrases in the relevant sentences 

are first identified and extracted. Then, the extracted semantic information elements are interpreted into 

computer-processable representations. However, building code is usually written in natural language 

and used by human engineers with extensive domain knowledge, and problems such as incompleteness, 

ambiguity, vagueness, and tacit knowledge have made it difficult for a computer to understand some 

complex building codes automatically (Soliman-Junior et al., 2021). Not all requirements in the codes 

could be interpreted automatically by a computer. Regarding these requirements, the interpretability is 

relatively low. Requirements with low interpretability can lead to a large number of errors if interpreted 

automatically. Therefore, although existing studies have facilitated the process of automated rule 

interpretation, information extraction and transformation efforts mainly focus on early and manually 

filtered clauses that can be easily interpreted. In recent years, to further improve the accuracy of the 

information extraction and transformation processes, text classification has been incorporated into the 

automated rule interpretation pipeline. Text classification aims to recognize relevant sentences in a 

regulatory text corpus, thereby preventing inefficiency and errors in downstream tasks, which result 

from the unnecessary processing of irrelevant text (Zhou & El-Gohary, 2016; Song et al., 2018). 

However, the existing text classification efforts mainly focus on classifying clauses according to their 

topics, subjects, or scopes (Zhang & El-Gohary, 2021b). However, most of them neglect the 

interpretability of the clause, which reflects its potential to be transformed into a computer-processable 

format. 

Knowledge of the types and interpretability of clauses is essential for improving or extending 

existing ARC systems to achieve enhanced coverage and performance or to develop new ARC systems 

with increased capabilities (Solihin & Eastman, 2015; Zhang & El-Gohary, 2021b; Soliman-Junior et 

al., 2021). In addition, the evaluation of the interpretability of entire building code may also lead to the 

optimization and revision of the existing building codes, making them more suitable for ARC systems 



 

 

(Soliman-Junior et al., 2021). However, limited research efforts have been devoted to identifying and 

characterizing the different types of clauses in AEC regulations to better assess the interpretability of all 

clauses (Solihin & Eastman, 2015). For example, Solihin & Eastman categorized clauses into four 

categories based on what type of building information modeling (BIM) data the clauses required 

(Solihin & Eastman, 2015). However, they evaluated the interpretability of each clause through a 

manual method, which was labor intensive and time consuming. It is difficult to evaluate the 

interpretability of a large number of existing clauses and building codes. Zhang & El-Gohary 

automatically evaluated the interpretability of the International Building Code (IBC) and its 

variations/amendments based on a clustering approach, thereby improving the efficiency of the 

evaluation process (Zhang & El-Gohary, 2021b). However, their clustering-based method has only been 

applied to the IBC thus far, and the method’s applicability to other building codes needs to be further 

analyzed. The existing studies mainly analyze the interpretability of a single clause based on manual or 

semiautomated means. Few works analyze the interpretability of whole building codes for the 

optimization and revision of existing building codes. Therefore, the research gaps include a) automated 

interpretability evaluation methods for both single clauses and building codes, b) quantitative analysis 

of the influence of rule interpretability evaluation on automated rule interpretation, and c) 

interpretability evaluation of existing large-scale building codes for future code development, 

optimization, and revision. 

To better evaluate the interpretability of existing building codes, this work proposes an automated 

interpretability evaluation method based on text classification. First, category criteria that are suitable 

for evaluating the interpretability of each clause are proposed, and subsequently, a training dataset is 

constructed based on the proposed category criteria. Second, a deep learning (DL) model that utilizes 

transfer learning techniques is trained to automatically classify each clause; this approach outperforms 

the widely used traditional DL models and achieves state-of-the-art results. Third, we propose an 

interpretability evaluation method for a whole building code based on a well-trained DL model. Finally, 

the proposed method is applied to assess the overall interpretability of a series of Chinese building codes. 

The remainder of this paper is organized as follows. Section 2 reviews the related work and 

highlights the potential research gaps. Section 3 describes the category criteria designed for 

interpretability evaluation, the development of the dataset, and the interpretability evaluation method 

for building codes. Section 4 describes the training process and performance evaluation of the DL 

models. Section 5 conducts an experiment to demonstrate the improvement achieved by the proposed 

interpretability evaluation method in terms of rule interpretation. Section 6 evaluates the interpretability 

of a series of Chinese codes. Section 7 discusses the advantages and contributions of this research and 

notes its limitations. Finally, Section 8 concludes this research. 

 

2 Overview of related studies 

2.1 Evaluation of the interpretability of building codes 

Automated rule interpretation, which aims to interpret regulatory clauses into a computer-

processable format, is the most vital and complex stage of ARC. To achieve a full level of ARC, many 



 

 

automated rule interpretation attempts have been made based on NLP techniques (Fuchs, 2021). 

Existing studies can be broadly divided into two groups, including (1) information extraction and 

transformation studies, which extract relevant semantic elements from clauses and then format them 

into computer-processable representations (Zhang & El-Gohary, 2015; Zhang & El-Gohary, 2017; Zhou 

et al., 2022; Zhang & El-Gohary, 2021a), and (2) text classification research, which filters irrelevant 

clauses in building code, thereby improving the accuracy of downstream tasks (e.g., information 

extraction) (Zhou & El-Gohary, 2016; Salama & El-Gohary, 2016; Song et al., 2018). Although existing 

studies have facilitated automated rule interpretation, information extraction and transformation efforts 

have mainly focused on filtered clauses that can be easily interpreted. These techniques cannot measure 

the interpretability of all types of clauses. In addition, text classification efforts have mainly focused on 

classifying clauses according to their topics, subjects, or scopes (Zhang & El-Gohary, 2021b), which 

makes it difficult to evaluate the interpretability of clauses. 

Significant benefits are obtained if knowledge regarding clauses’ types and interpretability can be 

measured. The potential benefits may include (1) the ability to reuse clause structures and best practices 

(Solihin & Eastman, 2015); (2) the improvement or extension of existing ARC systems to achieve 

enhanced coverage and performance (Solihin & Eastman, 2015; Zhang & El-Gohary, 2021b; Soliman-

Junior et al., 2021); and (3) the optimization and revision of existing building codes to make them more 

suitable for ARC systems (Soliman-Junior et al., 2021). 

However, limited research has been devoted to identifying and characterizing the different types 

of clauses in AEC regulations to better assess the interpretability of all clauses (Solihin & Eastman, 

2015). The existing efforts in evaluating the interpretability of building codes are listed in Table 1. 

Moreover, most of the existing efforts with respect to interpretability evaluation are based on manual 

methods, which makes it difficult to evaluate the interpretability of large-scale building codes. For 

example, Solihin & Eastman categorized clauses into four categories based on what types of BIM data 

the clauses required (Solihin & Eastman, 2015). Uhm et al. analyzed the interpretability of requirements 

in requests for proposals (RFPs) for building designs in South Korea. The results showed that only 14% 

of sentences are computer-interpretable (Uhm et al., 2015). Malsane et al. classified building regulation 

clauses into those that were computer-interpretable (declarative) and those that were not (informative) 

(Malsane et al., 2015). They found that 19.7% of the clauses in the England and Wales Building 

Regulations that relate to fire safety for dwelling houses are computer-interpretable (Malsane et al., 

2015). Soliman-Junior et al. conducted a comprehensive assessment regarding the interpretability of 

UK healthcare building codes (Soliman-Junior et al., 2021). Their results showed that 47% of clauses 

in healthcare design regulations in the UK can be transformed into a logical rule sentence (Soliman-

Junior et al., 2021). In recent years, with the development of machine learning (ML) techniques, some 

automated methods have emerged. Among the automated evaluation methods, Zhang & El-Gohary 

evaluated the interpretability of the IBC based on a clustering approach (Zhang & El-Gohary, 2021b). 

However, their clustering-based method has only been applied to the IBC thus far, and the method’s 

applicability to other codes needs to be further analyzed. Their analysis results showed that 32.6% of 

clauses in the International Building Code have high or moderately high computability (Zhang & El-

Gohary, 2021b). 



 

 

Table 1 shows that the interpretability of different codes in different countries is not the same. To 

promote the development of automated rule interpretation, it is necessary to analyze the interpretability 

level of codes in a country to facilitate the optimization and revision of the existing building codes and 

to improve the interpretability of future codes. Therefore, methods for automatically evaluating the 

interpretability of single clauses and large-scale existing building codes should be further developed. 

Since many existing methods evaluate interpretability via manual text classification, a natural idea is to 

automate the process via DL and NLP methods. 

 

Table 1 Existing efforts in evaluating the interpretability of building codes 

Reference  Code Interpretability Method  

Solihin & 

Eastman, 2015 

 Singapore Building Code, Singapore 

Fire Code, International Building 

Code, etc. 

/ Manual  

Uhm et al., 

2015 

 Requests for proposals for building 

designs in South Korea 

14% of requirements are 

computer-interpretable 

Manual  

Malsane et al., 

2015 

 England and Wales Building 

Regulations that relate to fire safety for 

dwelling houses 

19.7% of requirements are 

computer-interpretable 

Manual  

Soliman-Junior 

et al., 2021 

 Healthcare Design Regulations in the 

UK 

47% of requirements can be 

transformed into a logical rule 

sentence 

Manual  

Zhang & El-

Gohary, 2021b 

 International Building Code 32.6% of requirements have high 

or moderately high computability 

Automated  

 

 

2.2 Automated text classification methods in the AEC domain 

The text classification task involves recognizing relevant sentences from large quantities of 

documents and assigning them to one or more predefined categories (Manning & Schutze, 1999) to 

facilitate downstream tasks. Many automated text classification methods have been proposed in the 

AEC domain, and we summarize them in Table 2. 

Because ML and DL algorithms cannot directly process texts in natural language, they typically 

represent a sentence by numerical features (Hassan & Le, 2020). The widely used feature representation 

methods include (1) bag-of-words (BOW) models and (2) word embedding models. In a BOW model, 

each sentence is represented as a numeric vector, where each element in the vector corresponds to a 

word. Each value in the vector can either be zero, indicating the absence of a word in the sentence, or a 

real number, indicating the frequency of the word in the sentence (Salton & Buckley, 1988; Hassan & 

Le, 2020). Unlike BOW models, a word embedding model employs artificial neural networks to 

generate a multidimensional real number vector that represents the semantics of every unique word in 

the whole input corpus (Mikolov et al., 2013). The word embedding model assumes that words 

appearing in the same context may have similar meanings. Thus, the vectors of these similar words are 



 

 

brought closer together in the vector space (Mikolov et al., 2013; Hassan & Le, 2020). 

After the features are represented, ML or DL methods are used to conduct category prediction. The 

adopted methods can be broadly divided into three categories according to model complexity: shallow 

ML models, traditional DL models, and pretrained DL models. Shallow ML models, which are the 

simplest type, include naïve Bayes (NB) models, support vector machines (SVMs), and logistic 

regression (LR). With the development of DL techniques, some traditional DL models have emerged, 

including convolutional neural network (CNN)-based models (e.g., TextCNN (Liu et al., 2016) and deep 

pyramid convolutional neural networks (DPCNN) (Johnson et al., 2017)) and recurrent neural network 

(RNN)-based models (e.g., TextRNN (Lai et al., 2015)). This type of model can automatically learn data 

representations with a nonlinear combination of multiple processing layers based on training data 

(LeCun et al., 2015) and performs better than shallow models (Zhong et al., 2020; Cheng et al., 2020; 

Tian et al., 2021). The main drawback of traditional DL models is that they require highly expensive 

manual efforts to prepare sufficient training datasets (Xu & Cai, 2021). Therefore, in recent years, 

pretrained DL models (e.g., bidirectional encoder representation from transformers (BERT) (Devlin et 

al. 2018)) have been proposed. These models are pretrained to provide a useful initialization of the 

parameter weights so that new tasks can be learned from large datasets (Fang et al. 2020). Pretrained 

models can achieve better performance than traditional DL models when the training datasets are 

relatively small (Fang et al. 2020). Therefore, in recent years, BERT-based text classification methods 

have been widely used in various domains. For example, Tagarelli & Simeri (Tagarelli & Simeri, 2022) 

proposed LamBERTa (law article mining based on BERT architecture) for law article retrieval tasks. 

Tian et al. (Tian et al., 2022) proposed a BERT and graph convolutional neural network-based safety-

hazard classification method for large-scale construction projects. Wang et al. (Wang et al., 2022) 

proposed a BERT-based text classification for Chinese emergency management with a novel loss 

function. 

However, the widely used pretrained models are pretrained on a general-domain corpus (Sun et al., 

2019), which has a different data distribution than that of the AEC domain. When the given training 

datasets are very limited, the common pretrained models still struggle to obtain satisfactory results. 

Therefore, more studies should be conducted to further improve the performance of pretrained DL 

models. 

 

Table 2 Automated text classification methods in the AEC domain 

Method/Feature BOW Word Embedding 

Shallow ML models Caldas et al., 2002; 

Salama & El-Gohary, 2016; 

Zhou & El-Gohary, 2016; 

Hassan & Le, 2020 

Hassan & Le, 2020; 

Tian et al., 2021 

Traditional DL models Hassan & Le, 2020 Song et al., 2018; 

Cheng et al., 2020; 

Zhong et al., 2020; 

Fang et al., 2020; 

Tian et al., 2021 

Pretrained DL models  Fang et al., 2020 



 

 

Tian et al., 2022 

 

2.3 Research gaps 

Despite the importance of these efforts, this paper aims to address four knowledge gaps. 

First, few studies have focused on the automated evaluation of machine interpretability at both the 

clause level and document level. Most of the existing studies focused on automated rule interpretation 

for filtering irrelevant clauses at the sentence level. The existing research regarding the evaluation of 

clause interpretability is based on manual methods, which makes it impossible to quickly evaluate the 

interpretability of a large number of existing building codes. 

Second, due to the lack of automated evaluation methods, few works have quantitatively analyzed 

the influence of rule interpretability evaluation on automated rule interpretation. 

Third, because of the lack of automated evaluation methods, few works have conducted systematic 

analyses and evaluations regarding the interpretability of the existing building codes. Therefore, it is 

difficult to optimize and revise the existing building codes to make them more suitable for ARC systems. 

 

3 Methodology 

To address the abovementioned problems, this article proposes a text classification-based approach 

to automatically evaluate the interpretability of every single clause and building code. The workflow of 

this method is shown in Fig. 1. It consists of three parts, including part 1: classification model, part 2: 

clause-level interpretability evaluation, and part 3: document-level interpretability evaluation. 

In part 1, we first propose clause-level category criteria, which aim to measure the interpretability 

of clauses (Section 3.1). Subsequently, based on the category criteria, a dataset for model training is 

constructed via manual annotation (Section 3.2). Then, we adopt a well-known pretrained DL model 

(i.e., BERT) for training and prediction. In addition, to improve the model’s performance in a case with 

small samples, this work adopts a domain corpus to further enhance the pretrained DL model (Section 

3.4). A series of models and experiments are utilized for comparison and evaluation purposes (Section 

4). The input of this part is clauses, and the outputs include an open-source dataset and a well-trained 

DL model. 

In part 2, the well-trained DL model and the proposed clause-level interpretability evaluation 

method are integrated into an automated rule interpretation method to enhance the performance of the 

automated interpretation (Section 5). The input of this part is clauses, and the output is the enhanced 

automated rule interpretation pipeline. 

In part 3, based on the clause-level category criteria, a quantitative indicator for evaluating the 

document-level interpretability of building codes is proposed (Section 3.3). Associated with the well-

trained DL model, we perform interpretability evaluation analysis for more than 150 building codes in 

China (Section 6). The input of this part is a list of building codes, and the outputs are suggestions for 

code development (Section 7). 

  



 

 

 

Fig. 1 Workflow of this research 

 

3.1 Clause-level classification categories 

The proposed clause-level category criteria aim to determine the interpretability of clauses in the 

design stage. Therefore, clauses related to the construction and maintenance stages, which may require 

detailed and complex information from the construction site, are eliminated. Then, if the data required 

by the clauses can be extracted via the BIM model structure, the clauses are more likely to be interpreted. 

In addition, the structure of the BIM model can be simple (e.g., when data can be directly read) or 

complex (e.g., when geometry should be considered). Considering the above points, after studying the 

Chinese design codes and the data structures of BIM models, we find it useful to distinguish seven 

general categories of clauses, which are described in more detail below. The description includes 

explanations of the definitions of the clauses, the interpretability of the clauses, and typical examples of 

the clauses. The categories are summarized in Table 3. 

 

3.1.1 Category 1: Direct 

Definition: This class of clauses checks the explicit attributes and entity references that exist inside 

the given BIM dataset. The information is explicitly available from the model, either directly from the 

entities or from its associated properties with other entities (via the explicit relationship entities). 

Interpretability: The data required for this type of clause can be obtained directly, so this is the 

simplest and most interpretable type of clause. 

Example: “The height of the enclosure walls should not be less than 2 m” (厂区周围宜设围墙，

其高度不宜小于 2 m。) (CJJ 64-2009). The information in this clause involves the entity "wall" and 

the attribute "height", which can be directly obtained through the BIM model. 

 

3.1.2 Category 2: Indirect 

Definition: The information required for this type of clause cannot be directly extracted from the 

BIM model. A set of derivations and calculations should be performed on the information directly 

obtained from the BIM model to prepare the required information for this type of clause. Then, the 



 

 

check can be conducted by comparing the derived data with the data specified in the clauses. 

Interpretability: The data required for this type of clause are not explicitly stored as BIM data. 

Additional derivations and calculations are required. However, all the data are stored in the BIM model. 

Therefore, this type of clause has a high degree of interpretability. 

Example: "The distance between the safety exits should not exceed 120 m." (电缆隧道的安全出

口间距不应超过 120 m。) (GB 50987-2014). The attribute "distance" specified in this clause is not 

directly stored in the BIM model. However, the coordinates of the two safety exits can be obtained from 

the BIM model, and then the distance can be calculated based on the coordinates. 

 

3.1.3 Category 3: Method 

Definition: This type of clause specifies the methods and measures that should be used in a design. 

These methods and measures are not described in the other clauses of the building code. Therefore, an 

extended data structure or domain-specific knowledge is required to understand this type of clause. 

Interpretability: An extended data structure or domain-specific knowledge is required to 

understand this type of clause. Therefore, this type of clause can be interpreted but is more difficult to 

interpret than the former two types. 

Example: “Natural ventilation is preferred for building ventilation.” (建筑通风宜采用自然通风

方式。) (GB/T 50824-2013). The "natural ventilation" method specified in the design is not predefined 

in the BIM model. Thus, to address this type of clause, additional data structures should be implemented 

based on domain knowledge. If the extended data structure is not defined, this type of clause cannot be 

interpreted. 

 

3.1.4 Category 4: Reference 

Definition: External information should be introduced to supplement the content of this type of 

clause. Such external information includes pictures, formulas, tables, and other clauses or appendices 

in the current building code and other building codes. 

Interpretability: External information is required to understand this type of clause. If the 

corresponding information can be found, it is difficult to interpret this type of clause. Therefore, this 

type of clause can be interpreted but is more difficult to interpret than the clauses contained in the direct 

and indirect classes. 

Example: "The physical properties of steel should satisfy the value provided in Table 3.2.7." (钢材

的物理性能指标应按表 3．2．7 采用。) (GB 50917-2013). The external information in “Table 3.2.7” 

is required to interpret this clause. 

 

3.1.5 Category 5: General 

Definition: This type of clause provides macro guidance for the design process. Such clauses cannot 

currently be handled by the BIM model. 

Interpretability: This type of clause is very macroscopic and cannot be interpreted. 

Example: "The materials, functions, and quality of doors and windows should meet the 

requirements for use." (门窗的材料、功能和质量等应满足使用要求。) (GB 50352-2019). This clause 



 

 

provides general design guidance, but it cannot be interpreted by the BIM model. 

 

3.1.6 Category 6: Term 

Definition: This type of clause defines the terms used in the codes. 

Interpretability: This type of clause cannot be interpreted. 

Example: "Water consumption: the amount of water consumed by users." (用水量：用户所消耗

的水量。) (GB 50013-2006). 

 

3.1.7 Category 7: Other 

Definition: The clauses that do not belong to the above six categories are “others”. This type of 

clause is usually a construction or maintenance process requirement, which is irrelevant to the BIM 

design and checking processes. 

Interpretability: These clauses are difficult to interpret. 

Example: "The amount of underground water for firefighting and sprinkling reserves should be 

replenished in time." (井下消防及洒水储备水量应能及时得到补充。) (GB 50383-2006). 

 

Table 3 Categories of the clauses 

Category Definition Interpretability 

direct The required information is explicitly available from the BIM model. Easy 

indirect 
The required information is implicitly stored in the BIM model. A set of derivations 

and calculations should be performed. 
Easy 

method An extended data structure and domain-specific knowledge are required. Medium 

reference 
The external information, including pictures, formulas, tables, and other clauses or 

appendices in the current building code or other building codes, is required. 
Medium 

general The clauses provide macro design guidance. Hard 

term The clauses define the terms used in the codes. Hard 

other The clauses do not belong to the above six categories. Hard 

 

3.2 Classification dataset development 

The dataset development procedure consists of three steps, including step 1: data acquisition and 

cleaning, step 2: data labeling, and step 3: data augmentation. The developed dataset can be found at 

https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-

Machine-Interpretability-of-Building/tree/main/CivilRules/dataset. 

Step 1: Data acquisition and cleaning. All regulatory texts are crawled from a website containing 

Chinese codes (Soujianzhu, 2021) by using Python scripts. A total of 396 codes involving various 

disciplines are crawled, with a total of 560,509 lines. The obsolete codes are also considered because 

the aim of this work is rule classification, and the timeliness of the contents of the clauses has no effect 

on this goal. The crawled raw texts contain much redundant information, such as the names and 

departments of the editors, which is useless for the text classification task. In addition, the raw texts also 

contain some disorderly tables and redundant, garbled codes and symbols. Therefore, data cleaning is 

performed to filter irrelevant information, and only the regulatory texts are extracted and saved. In 

addition, some clauses are composed of multiple sentences that are located in separate lines. To ensure 

https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-Machine-Interpretability-of-Building/tree/main/CivilRules/dataset
https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-Machine-Interpretability-of-Building/tree/main/CivilRules/dataset


 

 

the semantic integrity of the clauses, we combine such sentences into one line. The cleaned texts have 

a total of 126,433 lines. 

Step 2: Data labeling. After performing data cleaning, data labeling is conducted according to the 

clause-level category criteria proposed in Section 3.1. Domain experts manually label approximately 

200 sentences for each of the 7 categories, as shown in the blue columns in Fig. 2. The dataset contains 

a total of 1350 sentences. 

Step 3: Data augmentation. Among the 7 clause-level categories, the numbers of clauses in the 

direct and indirect categories are less than those of the other categories. The dataset is imbalanced, which 

is not conducive to model training. Note that this work focuses on the classification characteristics of 

the clauses, and the correctness of the content of the clauses has no effect on this task. Therefore, data 

augmentation can be carried out on these two categories of clauses to expand and balance the dataset. 

In this work, the data augmentation process involves the word replacement method, i.e., replacing the 

numerical values and comparison operators (e.g., more than, less than, and equal to) in one clause to 

generate a new clause. For example, we can replace the value "150" in the rule "The span of a single-

story warehouse should not be greater than 150 m" with a new value "720". A new clause can be 

generated: "The span of a single-story warehouse should not be greater than 720 m". For another 

example, we can replace the comparison operator "less than" in the clause "The height of the rail should 

not be less than 1.1 m" with a new operator "more than". A new clause can also be generated. The 

numbers of clauses in the 7 categories after data augmentation are shown in the orange columns of Fig. 

2. The dataset contains a total of 1,450 clauses. 

 

Fig. 2 Distributions of the developed datasets 

 

3.3 Document-level interpretability evaluation indicator 

This section illustrates the document-level interpretability evaluation indicator for a whole building 

code. According to clause-level interpretability, the 7 categories can be divided into three groups, as 

shown in Table 4. Group 1 includes the clauses in the direct and indirect categories, which are easy to 

interpret. Each clause in Group 1 is counted as 1 point. Group 2 includes the clauses in the method and 

reference categories, which can possibly be interpreted. Each clause in Group 2 is counted as 0.5 points. 

Group 3 includes the clauses in the remaining 3 categories, which are difficult to interpret. Each clause 

in Group 3 is counted as 0 points. 
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Table 4 Document-level interpretability evaluation indicator 

 Group 1 Group 2 Group 3 

Categories direct, indirect method, reference general, other, term 

Interpretability Easy Medium Hard 

Score of each sentence 1 0.5 0 

 

Then, the average interpretability of each building code can be calculated by using Equations (1) 

and (2). 

𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑑𝑒 =  ∑ 𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑢𝑠𝑒𝑖

𝑛

𝑖=1

 (1) 

𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑐𝑜𝑑𝑒 =
𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑑𝑒

𝑐𝑙𝑎𝑢𝑠𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑐𝑜𝑑𝑒
× 100 % (2) 

where scorecode is the total score of each building code. scoreclausei is the score of clausei. clause 

numbercode is the number of clauses contained in the building code. 

 

3.4 Text classification based on a domain-specific pretrained model 

Compared to the text classification task for subjects or topics, the classification task for 

interpretability is more complex and is dependent on a comprehensive understanding of sentence 

semantics. With the development of DL techniques and open datasets for model training, it is possible 

for NLP-based methods to achieve a more comprehensive understanding of regulatory texts (Fuchs, 

2021). Therefore, the well-known pretrained BERT model is adopted in this work. In addition, to 

improve the model’s performance in cases with small samples, this work adopts a domain corpus to 

further enhance the model; this requires no additional manual labeling efforts. 

The overall workflow is shown in Fig. 3. First, the domain corpus is used to further pretrain the 

BERT model, and then a domain-specific BERT model is obtained (Section 3.4.1). Subsequently, the 

constructed text classification dataset is used to train the model to obtain the target well-trained BERT 

model (Section 3.4.2) that can be used for text classification prediction. 

 

 

Fig. 3 The overall workflow of the adopted training strategy 
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3.4.1 Further domain corpus-enhanced pretraining 

The BERT model is pretrained on the general-domain corpus (Sun et al., 2019), which has a 

different data distribution from that of the target domain. When the labeled dataset is very limited, the 

BERT model pretrained on the general-domain corpus still has difficulty obtaining satisfactory results. 

Therefore, to improve the performance of the pretrained model, this work adopts the domain corpus 

enhancement method with the domain corpus constructed by Zheng et al. (Zheng et al., 2022). We 

further pretrain BERT with a masked language model and subsequently complete sentence prediction 

tasks (Devlin et al., 2018) on the domain corpus. 

The process of the adopted masked language model in the additional pretraining task is shown in 

Fig. 4. First, some words in the input sentence are randomly masked. The masked sentences are then 

used as inputs for the BERT model, while the ground truth contains the masked words. Then, the weights 

of the parameters in the original BERT model (i.e., the yellow part in Fig. 4) are optimized by predicting 

the masked words. The domain-specific BERT model can be obtained after finishing the additional 

pretraining task. Notably, the masked language model and next sentence prediction tasks are typical 

unsupervised tasks that do not require additional manual labeling efforts. 

 

 

Fig. 4 Schematic of the additional pretraining task 

 

 

3.4.2 Fine-tuning for the text classification task 

After completing the additional pretraining tasks, the domain-specific BERT model is trained for 
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the text classification task. The basic training process of the BERT-based text classification model is 

shown in Fig. 5. First, all tokens of each input sentence are embedded by using the pretrained domain-

specific BERT model. Then, all the embeddings are encoded into contextual representations by the 

BERT model. Subsequently, the contextual representations are input into the fine-tuning layers to obtain 

the text classification prediction result. In this training process, the input of the model is a sentence, and 

the ground truth is a manual label. 

 

 

Fig. 5 Schematic of the training task for text classification 

 

4 Experiments and results 

4.1 Model pretraining and fine-tuning 

For the additional pretraining task of the BERT model, an in-domain corpus, which contains 

126,433 lines of Chinese regulatory texts and a total of 10,895,634 Chinese characters (Zheng et al., 

2022), is adopted. The widely used bert-base-chinese model (Hugging Face, 2019) is chosen as the 

original BERT model. The bert-base-chinese model is the most common BERT-based model for 

completing tasks in Chinese; it is pretrained based on the Chinese Wikipedia corpora. Further 

pretraining tasks, including masked language model construction and the next sentence prediction task, 

are adopted (Hugging Face, 2019) and are also illustrated in Section 3.4.1. As recommended by Zheng 

et al. (Zheng et al., 2022), the models are further pretrained with a learning rate of 5e-5 and a batch size 

of 4. The further pretrained model is denoted as RuleBERT. 

For the training task, which is illustrated in Section 3.4.2, the balanced text classification dataset 

obtained after augmentation is adopted. The dataset is randomly split into training, validation, and test 

datasets at a 0.8:0.1:0.1 ratio, where the training dataset is used to train and update the DNN model, the 
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validation dataset is used to test the performance of the model and choose the best hyperparameters and 

the corresponding best model, and the test dataset is used for the final performance evaluation. 

The BERT-based models (i.e., the original BERT models and RuleBERT) are fine-tuned on the 

training datasets with 100 epochs and a padding size of 64. In addition, the effects of different learning 

rates are considered via grid searches with learning rates of 0.00007, 0.00005, 0.00003, and 0.00001. 

Four types of widely used traditional DL-based text classification approaches are compared with 

our model. These models include (1) TextCNN (Chen, 2015), (2) TextRNN (Liu et al., 2016), (3) 

TextRNN with attention (TextRNN-Att for short), and (4) Transformers (Vaswani et al., 2017). The 

initial parameters of the word embedding representation layers of the above models are pretrained on 

the Chinese Wikipedia corpora (Wikipedia, 2021) by using a skip-gram model (Mikolov et al., 2013). 

The above DL models are then trained for 100 epochs with a padding size of 64. In addition, the effects 

of different learning rates are considered via grid searches with learning rates of 0.001, 0.0005, 0.00025, 

and 0.0001. Note that the BERT-based models have many more parameters than the traditional DL-

based models, so their learning rates are different. The performance of these models on the test dataset 

is shown in Section 4.3. 

 

4.2 Evaluation performance metrics 

To measure the results, the model predictions are compared with the gold standard, and the widely 

used weighted average F1-score (weighted F1) is selected as the metric. 

First, the precision (P), recall (R), and F1-score (F1) are calculated for each semantic label: 

      𝑃 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑 
(3) 

  𝑅 = 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑁𝑡𝑟𝑢𝑒 
(4) 

𝐹1 = 2𝑃𝑅/(𝑃 + 𝑅) 
(5) 

where 𝑁{𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑙𝑎𝑏𝑒𝑙𝑒𝑑,𝑡𝑟𝑢𝑒} denotes the number of {correctly labeled by model, labeled by model, 

true} elements for a label. Finally, the weighted average F1-score is calculated to represent the overall 

performance (𝑛𝑖 denotes the number of elements in the i-th semantic label): 

  Weighted 𝐹1 = (∑ 𝑛𝑖𝐹1,𝑖

𝑖

) / ∑ 𝑛𝑖

𝑖

 (6) 

 
 

4.3 Performance evaluation 

The performance of the well-trained text classification models is shown in Fig. 6, and the following 

conclusions are drawn. First, the original BERT model performs better than the other traditional DL 

models, which is in line with the results of Fang et al. (Fang et al., 2020). Second, after completing the 

additional pretraining task on the in-domain corpus, the enhanced BERT model (i.e., RuleBERT) 

performs even better than the original BERT model. RuleBERT achieves the global best weighted F1-

score of 93.60%, which corresponds to a state-of-the-art effect. Note that the further pretraining task 

utilizes the unlabeled in-domain corpus, which does not require manual annotation effort. 

 

 



 

 

 

Fig. 6 Weighted F1-scores achieved on the text classification datasets 

 

5 Quantitative analysis of rule interpretation improvement 

Before automated rule interpretation, our text classification-based interpretability evaluation 

method can be used to filter clauses with low machine interpretability. Then, clauses with high machine 

interpretability can be interpreted using an automated rule interpretation algorithm. Thus, the error rate 

of the automated rule interpretation algorithm can be reduced. 

Therefore, we carried out an experiment to demonstrate the improvement achieved by the proposed 

interpretability evaluation method in terms of rule interpretation. The successful and correct 

interpretation rates before text classification are taken as the benchmark, and the percentages of clauses 

successfully and correctly interpreted before and after the classification process are compared. To 

evaluate the accuracy of the automated rule interpretation results, the correctness of the automated 

interpretation results is determined in a sentence-by-sentence manner by domain experts. 

Specifically, this experiment includes three steps. Step 1: Before conducting text classification, the 

automated rule interpretation method is used to interpret all the clauses derived from one regulatory 

document. Then, domain experts manually checked the automated interpreted results. Subsequently, the 

percentage of clauses that are successfully and correctly interpreted is calculated. Step 2: The proposed 

text classification-based interpretability evaluation method is executed. The clauses that are difficult to 

interpret (i.e., the clauses in the general category, the “other” category, and the terms category) are 

excluded. Step 3: After classification, the automated rule interpretation method is applied to the 

remaining clauses. Then, the percentage of clauses successfully and correctly interpreted after text 

classification is calculated. 

In this work, the regulatory texts obtained are from the Chinese Code for Fire Protection Design 

of Buildings (GB 50016-2014). After performing sentence splitting, the specification contains 1004 lines 

of clauses. The automated interpretation method proposed by Zhou et al. (Zhou et al., 2022; Zheng et 

al., 2022) is adopted to perform rule interpretation. The adopted automated interpretation method 
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includes three main steps. First, a syntax tree structure with seven semantic elements (i.e., obj, sobj, 

prop, cmp, Rprop, ARprop, and Robj) is proposed to represent the roles and relations of concepts in 

regulatory text. Second, a deep learning model with the transfer learning technique is utilized to label 

the semantic elements in a sentence. Finally, a set of CFGs is built to parse a labeled sentence into the 

language-independent tree structure, from which computable checking rules can be generated. It should 

be noted that although the experiment in this work adopts the automated interpretation algorithm 

proposed by Zhou et al. (Zhou et al., 2022), alternative automated rule interpretation algorithms can also 

be utilized in other systems. The well-trained RuleBERT (Section 4.3) is utilized to perform text 

classification. 

Before the text classification operation, a total of 1004 sentences are interpreted, and the number 

of clauses correctly and successfully interpreted is shown in Table 6. The results of text classification 

are shown in Table 5. The clauses that are not suitable for interpretation are excluded, and the remaining 

749 clauses are suitable for interpretation. Table 6 shows that after performing text classification, the 

accuracy of the automated interpretation results is improved from 68% to 72%. The experimental results 

also validate the reliability and validity of the proposed method. 

 

Table 5 Rule classification results 

Total direct indirect reference method general others term 

1004 280 193 119 157 70 112 73 

 

Table 6 Rule interpretation results 

 Before text classification After text classification 

Number of input clauses 1004 749 

Number of successful clauses 679 539 

Percentage of successful clauses 68% 72% 

 

6 Interpretability evaluation for different Chinese building codes 

6.1 Data collection for building codes 

6.1.1 Fundamental building codes in different domains and levels 

The proposed text classification-based interpretability evaluation method is first used to assess and 

analyze Chinese fundamental building codes from different domains. To perform the evaluation, 26 

codes from 8 building design subdomains are collected first. The domains include structural, water 

supply and drainage, electrical, heating and ventilation, intelligence, fire protection, energy efficiency 

and environmental protection, and architecture domains. The numbers of building codes and clauses in 

different domains are shown in Table 7. The codes are divided into two groups, GB and HB, based on 

their levels. GB stands for national standards, and HB stands for industrial standards (e.g., JGJ, CJJ, and 

CECS). 

 

Table 7 Chinese fundamental building codes in different domains and levels 

Domains 
Number of building 

codes in GB level 

Number of 

clauses 

Number of building 

codes in HB level 

Number of 

clauses 



 

 

Structural 4 2864 1 1032 

Water supply and drainage 2 1643 1 146 

Electrical 1 259 2 3310 

Heating and ventilation 1 985 2 703 

Intelligence 1 530 1 254 

Fire protection 3 1192 1 86 

Energy efficiency and 

environmental protection 1 

311 

1 

205 

Architecture 2 625 2 353 

Total 15 8409 11 6089 

All   26 14498 

 

6.1.2 Building codes from the fire protection domain 

The proposed text classification-based interpretability evaluation method is then used to assess and 

analyze the codes at different levels of the fire protection domain. A total of 134 building codes are 

collected in the fire protection domain at the national level (GB), the industrial level (HB), and the local 

level (DB). As the numbers of clauses in some codes are too small, only the codes with more than 50 

clauses are retained for further analysis (97 total). Among the 97 codes, 62 are at the GB level, 22 are 

at the HB level, and 13 are at the DB level. 

 

6.2 Evaluation of fundamental building codes from different domains 

After performing data collection, the well-finetuned RuleBERT model described in Section 4 is 

used to classify all the clauses into the 7 categories defined in Section 3. Then, the quantitative 

evaluation method developed in Section 3.3 is used to assess the document-level interpretability 

obtained from different domains and at different levels. 

The scores for the different domains and levels of the fundamental building codes are shown in 

Table 8. For all the fundamental codes, the overall average interpretability is 34.40%. Other researchers 

manually evaluated the interpretability of Chinese fundamental codes and found that the average 

interpretability was 34% (Gu, 2021). Our automated evaluation result matches well with the results 

evaluated by experts manually, which validates the reasonability of our methods. Furthermore, the 

average interpretability of all codes at the GB level is 35.51%, which is higher than the 32.82% achieved 

for all codes at the HB level. This indicates that the interpretability of the codes at the GB level is better 

than that of codes at the HB level. 

Regarding the codes in different domains, the fire protection domain achieves the highest 

interpretability, with 58.64% interpretability at the GB level and 53.49% at the HB level. This means 

that more than half of the clauses in the fire protection domain have the potential to be automatically 

interpreted. The average interpretability of the architecture domain is the second-highest value, 

exceeding 40%. The interpretability scores of the intelligence domain and the energy efficiency and 

environmental protection domain are lower than 20%. 

 

Table 8 Interpretability of building codes in different domains 

Domains The national level (GB) The industrial level (HB) 



 

 

Structural 34.27% 37.12% 

Water supply and drainage 35.85% 30.81% 

Electrical 29.93% 32.69% 

Heating and ventilation 26.29% 31.65% 

Intelligence 10.76% 10.63% 

Fire protection 58.64% 53.49% 

Energy efficiency and environmental protection 16.88% 27.81% 

Architecture 43.84% 38.38% 

Total 35.51% 32.82% 

All  34.40% 

 

6.3 Evaluation of the building codes from the fire protection domain 

Then, the proposed quantitative evaluation method developed in Section 3.3 is used to assess the 

document-level interpretability of the building codes from the fire protection domain. The 

interpretability values of codes obtained from different levels are shown in Table 9. The average 

interpretability values show that the interpretability ranking is GB > HB > DB, which is consistent with 

the results in Section 6.2, i.e., GB > HB. 

When the interpretability value of one building code is greater than 50%, more than half of its 

clauses can be interpreted. Therefore, these building codes are defined as highly interpretable codes. An 

analysis of the highly interpretable codes at different levels is conducted. The results show that over 

24.19% of the codes at the GB level are highly interpretable, 9.10% of the codes at the HB level are 

highly interpretable, and 7.69% of the codes at the DB level are highly interpretable. 

The above analysis shows that for the Chinese codes obtained from the fire protection domain at 

different levels, the interpretability ranking is GB > HB > DB. 

 

Table 9 The interpretability of the codes in the fire protection domain 

Level Max interpretability value Average interpretability value Highly interpretable code 

GB 64.49% 36.40% 24.19% 

HB 52.63% 29.41% 9.10% 

DB 60.32% 26.38% 7.69% 

 

7 Discussion 

This work contributes to the overall body of knowledge on four main levels. 

(1) This work proposed novel clause-level category criteria for rule interpretation based on an 

investigation of Chinese design codes and the data structures of BIM models. The proposed category 

criteria could be used to evaluate the complexity and interpretability of clauses and building codes. 

Based on the category criteria, regulatory texts were collected, and a text classification dataset was 

constructed for DL model training via manual annotation. A data augmentation method was proposed 

to solve the imbalance problem faced by this dataset. The constructed dataset can be used to train text 

classification models for clauses in the civil domain and can also be used to test the performance of 

different text classification methods. The dataset has been made open source, so it can contribute to the 

development of ARC. 



 

 

(2) We adopted advanced NLP and a pretrained DL model to automate the text classification-based 

interpretability evaluation process. To address the small sample issue, we utilized an additional 

pretraining method with the widely used original BERT model and obtained the RuleBERT model. We 

compared and evaluated the performance of our approach against other DL-based text classification 

approaches. The experimental results demonstrated that our further pretrained DL model (RuleBERT) 

could achieve the best text classification performance. Note that the additional pretraining method is an 

unsupervised task. RuleBERT performed better than the original BERT model without additional 

manual labeling efforts. The training codes and well-trained models are open-sourced and can be found 

at https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-

Machine-Interpretability-of-Building. 

(3) In addition, we carried out an experiment to demonstrate the effect of our automated text 

classification method in terms of automated rule interpretation. The results showed that when utilizing 

our method, the success rate of automated rule interpretation was improved by 4%. 

(4) A document-level interpretability evaluation indicator was proposed based on clause-level 

category criteria. More than 150 Chinese design codes were collected for evaluation purposes. 

Subsequently, the well-trained RuleBERT associated with the proposed document-level interpretability 

evaluation indicator was utilized to complete two evaluation tasks. First, the interpretability of Chinese 

fundamental codes in different domains and at different levels was evaluated. For all the fundamental 

codes, the overall average interpretability was 34.40%. The building codes in the fire protection domain 

were most interpretable, with an interpretability score exceeding 50%. Second, the interpretability of 97 

building codes in the fire protection domain was evaluated. The analysis showed that for the Chinese 

codes of the fire protection domain at different levels, the interpretability ranking was GB (the national 

level) > HB (the industrial level) > DB (the local level). To the best of our knowledge, this is the first 

effort to evaluate the interpretability of large-scale Chinese building codes. The interpretability 

evaluation can provide guidance for the optimization and revision of the existing codes. For example, 

to achieve better interpretability, the codes in other domains can refer to the codes in the fire protection 

domain, and the codes at other levels can refer to the codes at the GB level. In addition, the proposed 

evaluation method is conducive to developing automated rule interpretation methods. For example, 

future work can focus more on clauses that have the potential to be automatically interpreted. 

According to the interpretability analysis conducted on the fundamental regulatory documents, 

approximately one-third of the existing clauses can be automatically interpreted, which means that there 

is still a long way to go to achieve full ARC. In other words, to realize full ARC for all the existing 

building codes, relying solely on the intelligence of algorithms and machines may not be sufficient. 

Human–machine intelligence is expected to promote ARC development in the following ways. For 

example, domain experts can first revise the existing regulatory documents to (1) simplify the structures 

of the documents and (2) improve consistency and clarity regarding language usage. In this way, the 

interpretability of regulatory documents may increase. Second, a domain-specific knowledge database 

should be established (Wu et al., 2022b; Zhou et al., 2021); this would require domain experts’ efforts 

and is essential for a machine to understand the meanings of clauses. Policymakers or managers might 

need to rethink the code-writing process and invite computer experts to join each code development 

https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-Machine-Interpretability-of-Building
https://github.com/SkydustZ/Text-Classification-Based-Approach-for-Evaluating-and-Enhancing-Machine-Interpretability-of-Building


 

 

committee. Experts in civil engineering make up the majority of the current code development 

committee. Today, codes are meant to be read by engineers (human beings). The codes written by the 

code development committee may have low interpretability because experts in civil engineering may 

have a limited understanding of computer technologies. Managers may think about integrating computer 

experts into the code development committee so that the committee has both civil engineering and 

computer science insights. Computer experts can also develop interpretability evaluation tools to assist 

the code-writing process. 

Despite the success of our proposed rule classification criteria and model, the following limitations 

need to be acknowledged. First, the proposed criteria are still a preliminary attempt at interpretability 

evaluation. Therefore, more detailed rule classification criteria can be developed in the future. For 

example, future classification criteria can consider rule interpretation methods. Thus, the most proper 

predefined interpretation methods can be assigned to the corresponding clauses to interpret more 

complex clauses. Second, the reasons why the clauses are difficult to interpret can be further analyzed 

and manually highlighted. Thus, the optimization and revision methods for the existing codes can be 

summarized to achieve better automated rule interpretation. Third, the developed datasets can be 

enriched to further improve the performance of DL models. Fourth, for the small sample issue, despite 

the use of our pretraining method, other methods should be further explored. For example, prompt 

learning has been proposed in recent years and is designed for few-shot or zero-shot learning. Finally, 

future research can be based on the visualization of attention patterns in BERT models to understand 

what is going on inside the “black box” and increase the model explainability (Tagarelli & Simeri, 2022). 

This may increase the understanding of the complex patterns and relationships of building codes. 

 

8 Conclusion 

In this research, we first proposed clause-level text classification category criteria that can evaluate 

the interpretability of clauses. Based on the proposed category criteria, a dataset was constructed for DL 

model training. A data augmentation method was proposed to solve the imbalance problem faced by the 

dataset. Second, we developed an automated text classification method utilizing an advanced pretrained 

DL model and transfer learning techniques. Our further pretrained RuleBERT model achieved the best 

performance and outperformed the existing CNN- or RNN-based methods, improving the F1-score from 

72.16% to 93.60%. Third, the proposed automated text classification method can enhance downstream 

automated rule interpretation methods, with an improvement of 4%. Fourth, we proposed a 

corresponding indicator and method to evaluate the document-level interpretability of building codes 

based on the automated text classification method, and then we evaluated more than 150 Chinese design 

codes from different domains and at different levels. The analysis showed that (1) approximately 34.40% 

of clauses in Chinese fundamental codes have the potential to be automatically interpreted; (2) among 

different domains, the building codes in the fire protection domain were most interpretable, with an 

interpretability score exceeding 50%; and (3) for the codes of the fire protection domain at different 

levels, the interpretability ranking was GB (the national level) > HB (the industrial level) > DB (the 

local level). To the best of our knowledge, this is the first effort to evaluate the interpretability of large-



 

 

scale Chinese building codes. 

This research provides an efficient approach for quickly evaluating the interpretability of clauses 

and building codes, which can be used in multiple ways, including improper sentence filtering in ARC 

and interpretability evaluation for large-scale codes. This research also published a labeled text 

classification dataset for future exploration, validation, and benchmarking in the ARC field. In addition, 

the analysis in this work shows that to achieve fully automated rule checking, cooperation between 

domain experts and algorithms is required (i.e., human–machine intelligence). These contributions can 

significantly promote the research and application of ARC. 

Further research is required to expand the category criteria and datasets for more detailed 

evaluations and predefined interpretation method recommendations. Regarding the small sample issue, 

despite the success of our pretrained model, more techniques should be explored. For example, the 

prompt learning method, which is designed for few- or zero-shot learning, may be applicable. 
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