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Abstract 

In the Architecture Engineering & Construction (AEC) industry, how design behaviors impact design 

quality remains unclear. This paper proposes an approach that identifies and quantitatively 

describes the relationship between design behaviors and design quality based on Building 

Information Modeling (BIM). Real-time collection and log mining are integrated to collect raw data 

on design behaviors. Feature engineering and various machine learning models are then utilized 

for quantitative modeling and interpretation. Results confirm an existing quantifiable relationship 

which can be learned by various models. The best-performing model using Extremely Random 

Trees achieved an R2 value of 0.88 on the test set. Behavioral features related to designer's skill 

level and changes of design intentions are identified as having significant impacts on design quality. 

These findings deepen our understanding of the design process and can help us create BIM designs 

of better quality. 
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1 Introduction 

In the AEC industry, construction projects are mainly divided into several stages, including 

design, construction, and operation. Although the design stage accounts for a relatively small 

proportion of time, funding, and manpower in the entire project, the quality of design often plays 

a decisive role in the overall quality and efficiency of the project [1]. Therefore, ensuring the quality 

of the design is of significant importance in ensuring the quality and efficiency of the entire project 

[2]. To ensure design quality, common practice and related studies mainly focus on discovering [3] 

and resolving [4] design problems. But very little attention is paid to exploring the cause of design 

problems to decrease their occurrence. 

During the design stage, the main characters carrying out design activities are designers. 

Factors such as their proficiency in using design tools, the richness of design experience, and their 

level of engagement during the design process may directly affect the design behaviors they take 

[5]. In the relevant research field as well as within this study, design behaviors refer to all relevant 

actions and operations taken by the designer when working in a BIM environment for specific 

design objectives. The final design is the accumulation of all these behaviors, therefore the 

behavioral characteristics of the designers and the quality of the final design results are believed 

to be inherently interlinked [6]. 
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In engineering practice, people have empirically summarized certain good practices and bad 

practices in the BIM design process [7,8]. Good practices are considered to have a positive impact 

on the efficiency and quality of design, whereas bad practices have the opposite effect. In the 

academic field, qualitative studies have identified that multiple factors, such as individual 

capabilities, work environment, and design intentions, influence the behaviors adopted by 

designers, thereby affecting the quality of the design [9]. However, qualitative studies have their 

limitations. Some scholars have pointed out that even for experienced designers, data-driven 

approaches can still provide new insights, better design strategies and optimized design processes, 

thereby enhancing the quality and efficiency of design [10]. Establishing a data-driven quantitative 

model that intuitively represents the relationship between design behaviors and design quality can 

take a step further compared to these qualitative studies. It helps in understanding the intrinsic 

reasons for variations in design quality, validate from a data perspective whether certain 

empirically derived practices are truly effective, and potentially offer more effective guidelines for 

design behaviors. This, in turn, may assist us in fundamentally improving design quality and 

efficiency, and reducing the occurrence of design errors. 

Currently, very few studies focus on analyzing how exactly design behavior results in certain 

quality of design. Existing studies on the analysis of design behavior data are primarily focused on 

the identification and prediction of local features instead of overall ones. For example, measuring 

the efficiency of performing specific operation, using Long Short-Term Memory Network (LSTM) to 

learn design behavior sequence to predict possible design behavior and using behavior data to 

analyze collaborative relationship between designers and teamwork efficiency [11]. There remains 

a notable research gap regarding exploring the relationship between design behavior 

characteristics and design quality, especially quantitatively modeling the link between the two. 

This study aims to extract behavior features from BIM-based design behavior data and 

subsequently establish quantitative models that prove and describe the relationship between 

these behavior features and the design quality. By analyzing and interpreting the key features of 

the developed models, this study seeks to deepen the understanding of design behaviors and 

provide data-driven insights to form guidance for assuring design quality. The remainder of this 

paper is organized in the following structure. Section 2 reviews existing studies on design quality 

management, quality analysis using behavior data in other disciplines as well as in the AEC industry 

and existing interpretation method for machine learning. Section 3 provides the methodology 

adopted by the study in full details including methods for data collection, data preprocessing, data 

augmentation, feature selection, modeling experiments and model interpretation. Section 4 

illustrates the collected data set and analyzes the results of the experiments and proposes the 

optimal model and the results of model interpretation. With these results, section 5 discusses the 

significance of the study, potential value as a reference for other related studies, the limitations of 

this study and possible directions for future research. Finally, Section 6 concludes this study. 

 

2 Literature Review 

2.1 BIM-based Design Quality Assurance 

Design quality issues have long been one of the most critical challenges in engineering 

practice. Even well-developed designs require rigorous reviews prior to the construction stage to 



identify and resolve design problems [12]. As a key information technology in the AEC industry, 

BIM provides an integrated platform for managing the entire project lifecycle data, thereby greatly 

enhancing communication and collaboration among stakeholders [13]. Moreover, the three-

dimensional modeling environment offered by BIM is more conducive to identifying design issues, 

particularly those related to multi-disciplinary coordination, and allows designers to intuitively 

investigate potential solutions. 

The main categories of BIM design quality issues given by [14] include: 1) Completeness: 

missing necessary components in the model or lacking required property information; 2) 

Correctness: dimensions or property information of model components not aligned with design 

knowledge and requirements, or improper spatial relationships between components; 3) 

Compliance: model components or parameters not meeting relevant design standards; 4) 

Consistency: inconsistency between drawings and models, inconsistent data representing the 

same information stored in different locations, or data inconsistencies related to geometry and 

other information; 5) Multi-disciplinary coordination: collisions between components from 

different disciplines, insufficient installation space, or inadequate clearance in the integrated 

model. 

Current industry practice for quality assurance primarily relies on manual identification and 

resolution through discussion, which is inefficient and risks overlooking problems [15]. Very few of 

these issues can be addressed using automated methods. Existing studies have explored more 

effective automated approaches for identifying and resolving these design quality problems based 

on BIM models. For completeness issues, studies have proposed rule-based identification, as well 

as machine learning and knowledge graph-based methods for missing data imputation [16,17]. For 

compliance issues, researchers have extracted information from standard texts and converted 

them into machine-executable structured formats to enable automated BIM design compliance 

checking [18]. 

However, existing studies have primarily focused on checking and resolving design problems, 

with little research addressing the root causes of these issues from the designers' perspective and 

how to more directly improve design quality and reduce the occurrence of design problems. 

 

2.2 Quality Analysis using Behavior Data 

In other disciplines, many studies focused on explaining or predicting the quality by 

establishing a quantitative relationship between process behavior data and quality of the result. 

Nikola et al. [19] collected the behavior data of students taking online exams and their basic 

characteristic data. Data of the previous students was then used to predict whether a student can 

pass the exam. Sven et al. [20] used a model based on Extreme Gradient Boosting algorithm to 

learn underlying feature patterns of the behavior data of workers in the warehouse. This model 

can be used to predict the work efficiency of newly recruited employees and make better work 

arrangements for the warehouse. 

In the AEC domain, research on design behavior is primarily categorized into qualitative and 

quantitative methodologies. Qualitative studies have explored the relationship between design 

behaviors and design quality, typically employing methods such as manual evaluation and surveys 

to provide descriptive insights into design behaviors. Vegard et al. [21], based on case analyses and 

interviews, investigated 10 key factors in the architectural design management process, including 



planning and designer management. Brown [10] designed comparative experiments and, through 

surveys, analyzed designers' performance under the influence of various factors such as different 

environments and tools, as well as the quality of the final design. The author also stressed the 

importance of data-driven approaches which can offer new insights and improved design strategies, 

even for experienced designers.  

Quantitative methods are a relatively recent development in the field, and there are only very 

few studies in this domain [22]. These studies mainly focused on the log files automatically 

generated by software as the only data source, and the identification or prediction of local features 

of behavioral data, such as time consumption of specific commands, sequential pattern of 

commands [23]. There is a lack of relevant studies exploring the direct relationship between design 

behavior and design quality. Yarmohammadi et al. [24] extracted design behavior features from 

the log files automatically generated by BIM modeling software and used the Generalized Suffix 

Trees algorithm to analyze the behavior of designers executing modeling commands. They found 

that different designers had significantly different efficiency of executing same series of commands. 

This may serve as a method to evaluate the working efficiency of different individuals. Pan et al. 

[25] utilized Kohonen Clustering Network (KCN) and Fuzzy C-Means (FCM) to analyze the design 

efficiency of designers across different time periods. By clustering designers based on this analysis, 

they aimed to optimize work schedules and enhance team productivity. Zhang et al. [26] used 

pattern recognition algorithms to obtain the most frequently executed sequences of modeling 

commands from log data, pointing out that different designers were significantly different in the 

efficiency of executing specific sequences. In the next year, they also analyzed the log data of 

different designers working together in the same project to analyze the value of different designers 

and the social network [27]. Pan et al. [11] extracted command execution data from the log file 

generated by Autodesk Revit and used the Long Short-Term Memory Network to learn sequences 

of modeling commands and predict what command is likely to come next. 

In summary, while there is a considerable body of research in other academic fields 

investigating the quantitative relationship between behaviors and quality of results, similar studies 

within the AEC domain remain relatively scarce. The primary research gaps are: 1) the quantitative 

relationship between design behaviors and design quality is critically important yet 

underrepresented, 2) existing quantitative studies often lack a focus on overall characteristics and 

design quality. 

 

2.3 Interpretation Method for Machine Learning Models 

 This study focuses on establishing a quantitative regression model to describe the relationship 

between design behavior and design quality. However, obtaining a model is not the ultimate goal. 

This study also aims to extract some knowledge from the data and models, so as to deepen our 

understanding of the practical problems of design, and to provide some insights for solving such 

problems [28]. Therefore, the interpretation of machine learning models is very important, 

because it helps us understand how the models perform, and really gain some knowledge from the 

data and models. 

 For a linear model, we can easily understand the structure and the mechanism of the model 

and we can know every detail of how the input produces the output. For some more complex yet 

more promising non-linear models, the mechanism is usually referred to as a “black box” and it is 



difficult, if not impossible, to understand what exactly happened in the model or why the model 

produces certain results [29,30]. This leads to acquiring an effective model but without any further 

knowledge or insights. 

 For some specific models, including those based on deep learning algorithms and tree-based 

algorithms, many studies have proposed targeted interpretation methods. In 2017, Scott et al. [31] 

proposed the general model interpretation method based on Additive feature attribution methods 

and SHapley Additive exPlanations (SHAP) values, combining six previously proposed  model-

specific methods. This method has been widely used in recent years in many studies using complex 

machine learning algorithm-based models.  

 

3 Methodology 

 

Figure 1. Research methodology 

 

As shown in Figure 1, this study first collected behavioral data from the BIM modeling design 

process based on Autodesk Revit software. The collected data mainly included log data 

automatically generated by the software and behavioral data collected in real time. The raw data 

then went through data preprocessing for cleaning low quality data and integrating data collected 

in different ways. Additionally, a targeted modeling quality evaluation method was proposed and 

the modeling results, namely the BIM models, were scored as a quantitative index to represent the 

design quality. The integrated data went through further data augmentation to ensure the 

sufficient data size for model training. Feature engineering was utilized to manually select data 

features for subsequent modeling and analysis. The modeling and analysis involved two sets of 

experiments: 1) model selection experiments to compare the effects of different machine learning 

algorithms, 2) hyperparameters optimization experiments using controlled variables method to 

determine the reasonable values of the hyperparameters introduced by the data augmentation 

method. Finally, the machine learning model interpretation method based on SHAP value was 

adopted to explain and analyze the model selected by the experiments and obtain important 

information such as key features of the model providing further insights for improving design 

quality in practice. 



3.1  Design Behavior Data Collection and Preprocessing 

3.1.1 BIM Design Behavior Data Collection 

Design behavior refers to the actions taken by the designer that contributes to the formation 

of the final design result and the design behavior data contains information needed to 

comprehensively describe the design behavior, including the type of behavior, the specific behavior 

information, the time of the behavior and the effect of the behavior. As mentioned before, most 

studies have relied solely on the log data automatically generated by software as the data 

describing the design behavior for analysis, but there are two obvious deficiencies. 1) The data in 

log files may not be sufficient. For example, log files produced by Revit lack certain keyboard input 

information. 2) Log files are not particularly created for research purposes, therefore considerable 

amount of effort is required to manually identify and extract needed information. For example, 

information about the creation and modification of model components in the Revit log data is 

incomplete and scattered. Much of it uses specially defined symbols or codes to record data, which 

makes it even more difficult to interpret [32]. 

In this study, a novel approach was adopted which combines log files and real-time data 

collection [33]. By developing Revit plugin tools, this method can directly collect data like keyboard 

pressing, elements created, modified or deleted. The data collected in real time served as an 

important supplement for log files, which can improve the efficiency of extracting log file data and 

further ensure the quality and integrity of the data. A Revit plugin named Design Tracker was 

developed based on the Revit open Application Programming Interface (API) [33]. It subscribes to 

specific events to capture certain behaviors such as the designer's modification to the model and 

the input of the keyboard, and then outputs related data to the external data files.  Data collected 

via the Design Tracker was saved in CSV format and log data were in their original TXT format. They 

were stored in two separate data files and they paired up as complete data describing the design 

process in one Revit session. Given the human subjects involved and data privacy concerns, the 

authors adopted extensive measures to ensure that this study complied with ethical standards and 

was conducted under supervision1. 

The data for this study were sourced from the author's university. Four courses were identified 

to be focused on the principles of BIM and modeling methodology based on Autodesk Revit 

software. These courses included Revit modeling assignments to evaluate the students' learning 

outcome. The assignments required them to complete a small BIM model based on the given 

examples. Students could choose other models as reference as long as they had similar size and 

functionality as the examples. They were also allowed to make unique modifications and 

innovative designs. This study utilized the process of students completing these modeling 

assignments as the data source. Specifically, students were instructed to install the Design Tracker 

for data collection. As they progressed with their assignments, the plugin recorded their behaviors 

and saved the data in CSV format in a specific data folder. At the end of each Revit session, the 

corresponding log file was automatically located and copied to the folder. The students were then 

required to submit the data folder along with their assignment deliverables after finishing the 

assignments. 

 
1 This study was approved and supervised by the Tsinghua University Science and Technology Ethics Committee. 
The project code: THU042024164. 



The raw data amounted to 2.21GB, including 3,074 data files from 68 students. Each student 

submitted an architectural model and a structural model, so a total of 136 BIM models were 

collected. On average, each model was associated with about 22 files which can describe about 11 

complete Revit sessions. Among them, 29 students had prior practical work experience in the field 

of civil engineering design before participating in the course, while the remaining students were 

essentially new to 3D modeling. Therefore, although the data for this study came from students, it 

still encompassed designers with varying skill levels. The conclusions derived from the analysis of 

this data are applicable to designers at different proficiency levels. 

3.1.2 Data Cleaning 

The collected raw data needed to be cleaned first to ensure the quality of the data. Log data, 

automatically generated by Revit software, tends to be of relatively stable quality; however, the 

data collected by the Design Tracker can be affected by unexpected behavior or program errors, 

resulting in missing or mistaken data. We did receive reports from students of unexpected error 

thrown by the plugin during modeling. These errors caused occasional blank lines and missing 

command names in the data. A few files exhibited a significantly shorter coverage duration 

compared to their corresponding log files due to unexpected early termination of the recording 

process. These incomplete or incorrect data were removed during the data cleaning stage. 

Secondly, the length of data files varied, depending on the amount of design behavior that 

the user engaged in during each Revit session. Each row in the data file corresponds to one specific 

operation behavior. Data files that were too short may contain little information regarding 

designer's behavioral characteristics. Therefore, files with insufficient length were removed in data 

cleaning. Paired data was discarded in this study if the log data file was smaller than 100 KB. 

Overall, removed data and data files constituted only a small fraction of the total data volume, 

ensuring data quality while not causing any appreciable change in the overall data quantity. 

 

3.1.3 Data Integration 

Following data cleaning, paired data files used to describe a complete Revit session needed 

to be merged into one data file to obtain an integrated data set. Data integration depended on the 

time stamp information of each row in the two files. Rows from the two files were rearranged in 

time order and output into one data file. 

Data integration mainly includes three steps: filtering, formatting and integrating of each 

specific data record. The process of data integration and a typical example are shown in Figure 2. 

Data in log files need to be filtered since log files are automatically generated by Revit and contain 

a significant amount of information that is irrelevant, such as operating system configuration, 

software configuration information, etc. Out of the total 28,786,373 lines of log data, only 13% 

were considered relevant. It is worth noting that low data relevance rate is a common 

phenomenon for BIM log mining studies [32]. For example, Zhang’s study [26] extracted only 

approximately 200MB of relevant data from 4GB of log files, resulting a data relevance rate of only 

about 5%. 

Usually, log records related to the designer's operation contain "Jrn" or "jrn" strings at the 

beginning of the Data Type. This study filtered for these records using this feature. A typical log 

entry includes Time Stamp, Data Type and Data Details. The Time Stamp is the time of this data 



record, and its format is cultural-dependent. The Data Type describes the type of data. In this 

example, "Command" means that this data is about a command and "AccelKey" means that the 

command is carried out using shortcut key combination. The Data Type is usually followed by 

multiple Data Details containing additional information related to this data. In this example, the 

only Data Detail states that the functionality of this command is canceling the current operation. 

The data collected in real time has been formatted by the plugin, featuring a structure similar 

to that of the log files. Each line represents a single designer operation with different parts 

separated by commas. Each line also contains an extra part called Time Stamp in Ticks, which is the 

total number of milliseconds that have passed from the time 01-Jan-0001 00:00:00 to the specified 

current time. This method provides a unified approach to time representation, facilitating easy 

comparison of Time Stamps. During formatting, Time Stamps in log files were also converted into 

Time Stamp in Ticks for time alignment purpose.  

 

Figure 2. Data integration process 

3.2 BIM Model Quality Evaluation 

Evaluation of BIM design quality is a complex problem. Under different application scenarios, 

criteria and indicators for evaluation can be different, so it is difficult to find a general method for 

BIM model evaluation. Some studies suggest a few basic principles that should be considered 

during evaluation [14]. Existing studies mainly considered completeness, accuracy and multi-

professional consistency as three main aspects for model quality evaluation [34]. 

In this study, model design quality was determined by scoring the students' modeling results 

with an evaluation method. Considering the characteristics of students and the goal of these 

courses, general evaluation methods in AEC industry are not suitable to use. Therefore, a targeted 

evaluation method is needed. The data source for this study was students, most of whom had 

insufficient modeling capabilities. When specifying the evaluation method, we considered the 

actual teaching focus and the students' skill level. In practice, due to the limited volume of course 

content, the introduction to architectural models was relatively detailed, with more teaching and 

practice of various modeling functions, while the teaching related to structural models was more 

concise and preliminary. Moreover, not every student possessed sufficient knowledge to design a 

structural model that adheres to the principles of mechanics and meets engineering standards.  

After consulting with the course instructors and experts, the evaluation of student model 



quality in this study was divided into four parts for architectural and structural models submitted 

by students. For architectural models, three indicators — completeness, accuracy, and 

complexity—were assessed, each carrying equal weight, with an initial score of 20 points each. For 

structural models, only completeness was evaluated. The requirements for structural modeling 

assignment were only creating certain types of structural components in reasonable positions, 

such as foundation, rebar, etc., and did not require their size, number or position to be correct and 

in line with structural engineering standards. The weight for structural completeness was halved, 

with an initial score of 10 points. The total initial score was 70 points. The sum of scores for the 

architectural model and the structural model was the total score for one student’s modeling result, 

which was used as the quantitative index for the evaluation of BIM design results. 

Scores were given in a comparing way. One student's models were firstly selected as the 

benchmark, and all aspects were scored with basic score that sums to a total score of 70 points. 

The scores of all other students were obtained by comparing them to the benchmark, awarding 

extra points or deducting points in each aspect. 

For evaluating the architectural model, three aspects were considered: completeness, 

accuracy and complexity. Completeness measured whether students had created all the required 

types of building components with reasonable placement such as walls, columns, floors, doors, 

windows, stairs, etc. Missing types of components caused deduction of the evaluation score. 

Accuracy measured whether there were visible modeling errors, such as wall members mistakenly 

passing through the roof, missing necessary platform slabs in the stairwell. More mistakes resulted 

in a lower score. Complexity measured the scale and complexity of the model. The larger the scale, 

the more types of components included, the more complex the components were, the higher the 

score. Each missing type of components deducted 2 points, each modelling error deducted 2 points. 

Awarding or deducting points for complexity evaluation shall not exceed ±10 points. 

For evaluating the structural model, the only aspect considered was completeness which has 

the same meaning described in the last paragraph. Each missing type of components or 

unreasonable placement deducted 2 points. The first part of the scoring sheet is shown in Figure 

3. 

 

Figure 3. Model scoring 

Based on the advice of the course instructors, we selected a student with an average 

performance as the benchmark and assigned every part of his score as the initial score. Based on 

the performance of this student, we estimated the possible ranges of scores for each part and in 

total. For example, the range of the completeness score of architectural models was estimated 



based on the following considerations. The architectural model components we demanded 

included six categories: walls, doors, windows, floors, stairs and roofs. The roofs and stairs of the 

selected student's architectural model were incomplete, so the best performance for this part was 

to fully create these two types of components on this basis, with a maximum score of 24 points. 

Considering that in most cases, there should be at least one type of components meeting the 

requirements, so the worst-case scenario would be failing in 3 more types, resulting in a score of 

14 points. 

For architectural models, the completeness score was anticipated to fall within a range of 14 

to 24 points. The accuracy score is expected to range from a minimum of approximately 12 to a 

maximum of 24 points. According to the evaluation method, the complexity scores naturally 

ranged from 10 to 30. For structural models, the integrity score was anticipated to range from 2 to 

16. The total score should be between 38 and 94. It should be pointed out that these are rough 

estimations that considered extreme cases which the actual data may include very few if not none. 

The actual ranges of students' scores are smaller than these estimations. 

We invited two experts in the field of BIM from the author's affiliated institution. They 

possessed necessary knowledge in BIM design and modeling as well as engineering experience, as 

they had been deeply involved in many engineering projects. They were asked to score all students 

modeling results according to the above method. It is worth pointing out that, although this study 

had clearly defined the criteria for scoring, the scores were still given by people, which inevitably 

introduced an element of subjectivity. This is an important feature of the data set, and section 4 

will analyze the impact of this feature on data analysis. 

 

3.3 Data Augmentation and Feature Engineering 

3.3.1 Data Augmentation 

In this study, students from related courses were considered as the data source so that the 

number of samples was relatively small. To ensure a sufficient data volume for training the 

regression model, data augmentation was necessary. Data is recorded in rows or in the form of 

sequence and there are many augmentation methods for sequence-type data. Window cropping 

method [35] was adopted for this study. This method requires setting a cropping window moving 

along the sequence data. Each data file is sliced into a number of sub-sequences with a length of 

𝑁, and the cropping window moves forward with a step size 𝑠. The size 𝑛 of the overlapping part 

between two adjacent sub-sequences can be calculated as: 𝑛 = 𝑁 − 𝑠. The corresponding quality 

score for each newly generated data sample is consistent with the original data. 

On one hand, this data augmentation method can balance the model learning bias caused by 

different sizes of samples, on the other hand, it can reduce the impact of noise data on the model 

and improve the robustness and generalization capability of the model.  

 

3.3.2 Feature Engineering 

In this study, the features extracted through feature engineering are mainly the overall 

densities of selected types of records in the samples obtained through statistical methods, which 

are defined into two categories: data density and time density. Data density refers to the 



proportion of the number of specified type of records to the total number of records in the sample, 

while time density refers to the proportion of the total time consumed by such records to the total 

time span of the sample. The time consumed by a record is calculated as the Time Stamp difference 

between this record and the previous one. For analysis purpose, the indications of the two 

categories are different. Data density may reflect the designer's behavioral preferences, while the 

time density may reflect the efficiency-related information of the designer. 

To calculate the density, the total length (L) and the total time span of the sample (T) is first 

calculated. Table 11 presents direct sample statistical indicators and abbreviations for features 

obtained from them. Subsequent analysis will be using these abbreviations. The selection of 

statistical indicators mainly considered their possible role in reflecting the designer's effective 

design behavior and behavioral characteristics, as well as the availability of information in the 

integrated data set. 

 

Table 11. Statistical indicators and features. 

No. Statistical Indicators Data Density 

Abbreviations 

Time Density 

Abbreviations 

1 Number of records with “Transaction Successful” transsuccess% transsuccess%t 

2 Number of added components add% add%t 

3 Number of adding add_times% add_times%t 

4 Number of deleted components delete% delete%t 

5 Number of deleting delete_times% delete_times%t 

6 Number of modifying modify_times% modify_times%t 

7 Number of executed commands command% command%t 

8 Number of undo or cancel commands undo% undo%t 

9 Number of commands via ribbon buttons ribbon% ribbon%t 

10 Number of commands via shortcuts accelkey% accelkey%t 

11 Number of pushing command related buttons pushbutton% pushbutton%t 

12 Number of pauses of 1-2 minutes idle1-2% idle1-2%t 

13 Number of pauses of 2-5 minutes idle2-5% idle2-5%t 

14 Number of pauses of more than 5 minutes idle>5% idle>5%t 

15 Effective work time - effectT% 

 

The reasons for selecting these statistical indicators are as follows. 

1) No.1, Records with “Transaction Successful”: Records with the phrase "Transaction 

Successful" come from log files, which usually represent that a group of modifications of the BIM 

model have been successfully executed and recorded through Revit's own transaction mechanism. 

Therefore, the density of such records can reflect how many substantial modifications the designer 

performed to the model, which may imply the working efficiency of the designer. 

2) No. 2-6, Records related to component manipulation: Records of adding, deleting and 

modifying elements come from data files collected via the Design Tracker, which can also reflect 

the efficiency of the designer for different types of specific modification behaviors. Among them, 

the total number of modified elements is not considered as a valuable statistical information. This 

is because components usually have many dependency relationships and geometry constraints 

with other components. When these components are modified, the software will automatically 



modify every other component which has relationship with them to ensure that dependency, 

constraint and other relationships remain valid and correct. Usually, the number of components 

actually modified is much larger than the number of components that the designer really cares 

about. Therefore, "the total number of modified elements" may not reflect the designer's behavior 

characteristics or intention and therefore is not considered as a valuable statistical indicator. 

3) No.7-11, Records related to commands: In the BIM-based model design process, the 

execution of commands is a critical behavior. Many statistical indicators related to the execution of 

commands are considered important, including the total number of commands executed, the 

number of commands canceled or undone, the number of commands executed through the ribbon 

menu, the number of commands executed using keyboard shortcuts and the number of buttons 

pressed. These indicators mainly reflect the execution of commands and the way of execution. Of 

course, commands can be further categorized into more specific types according to their specific 

function, but considering the excessive variety of commands and the number of executions of 

some rarely used commands may be too small to be significant, this study does not make more 

detailed classification of commands. 

4) No.12-14, Records related to pauses: Designers may interrupt their work to handle other 

matters or take a break, resulting in a pause in the data sample, that is, an interval of time between 

the two adjacent data records. Typically, considering the time of the operation itself and the 

response time of the computer, the time interval between continuous data records ranges from 

milliseconds to seconds. There are also some specific commands that are rarely used and require 

long computing time, which may take several minutes. Therefore, pauses of more than 1 minute 

in the data samples are usually not due to the limitation of computing power but the designers 

consciously delaying or halting the ongoing design process. Designers may be engaged in 

contemplation or momentary interruptions in case of short pauses and dealing with other tasks or 

leaving the work place in case of long pauses. The number and frequency of short pauses may 

reflect the designer's design efficiency, concentration level at that time. In this study, time intervals 

shorter than 1 minute were not counted as pauses, and the intervals of 1-2 minutes, 2-5 minutes 

and over 5 minutes were calculated as three different categories for different lengths of time 

intervals may imply different causes of pauses. 

5) No.15, Effective work time: The last time-related feature is calculated from the statistical 

indicator “effective work time”. Effective work time is defined as the sum of the total time span of 

the sample excluding the sum of all time intervals over 5 minutes. A pause of more than 5 minutes 

usually means the designer is no longer working on the design for an extended period, which is not 

counted as work time. Shorter time intervals implies that the designer does not completely halt 

the current work, so this part of the time is still considered as working time only with less efficiency. 

Dividing the effective work time by the total time span of the sample is the time density of the 

effective time, which may reflect the continuity of the designer's behavior and the designer’s depth 

of engagement. The data density calculated with the effective work time is not of obvious practical 

significance and therefore is not used as feature. 

The number of manually extracted features totals 29. The number of features is small, so 

methods such as correlation matrix analysis are not adopted for feature selection. Even this 

number of features still requires a data set of sufficient size for subsequent machine learning model 

training. Therefore, data augmentation should produce a sufficient number of samples. 



3.4 Modeling Experiments and Analysis Methods 

3.4.1 Model Selection Experiments 

Model selection experiments were used to identify the most effective supervised machine 

learning algorithms for establishing quantitative models. The data set used in the experiment was 

the behavioral feature data set obtained after augmentation and feature engineering. The data set 

was randomly split in an 80-20 ratio, with 80% of the data allocated to the training set and the 

remaining 20% allocated to the test set. Considering the two hyperparameters introduced in the 

data augmentation step, during the model selection experimental stage, all the algorithms were 

trained with an identical set of hyperparameters configured based on the characteristics of the 

data set.  

The experiments utilized the Sklearn software package of Python to iterate through all the 

available supervised machine learning regression algorithm for modeling training. The expected 

output of the model was the score corresponding to the sample, and the mean square error of the 

output score was taken as the loss function. The root mean square error (RMSE) and Coefficient of 

Determination (𝑅2) value were used to evaluate the effect of the trained model on the test set. 

The most effective models were then adopted in subsequent hyperparameter optimization 

experiments to determine the appropriate hyperparameter values. 

Sklearn package provides a number of available algorithms and the following categories were 

considered as candidates in this study: Linear Algorithms (including Ordinary Least Squares, Ridge 

regression, Lasso, Elastic-Net, etc.), Support Vector Machine, Stochastic Gradient Descent, Nearest 

Neighbors, Gaussian Processes, Decision Tree Based and Ensemble Methods (including AdaBoost，

Bagging，Random Forest, etc.). 

The use of both RMSE and R2 provides a well-rounded assessment of a model's performance 

and effectiveness. RMSE is used to describe the average error between the score value output by 

the model and the true score value. The smaller the RMSE value is, the better the model fits. Given 

a test set Q, which contains n samples, the true rating for each sample i is denoted as yi, and the 

model's evaluated rating is denoted as �̂�𝑖. The RMSE of the model on the test set can be calculated 

as equation (1). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1                                        (1)                                

The R2 value is a metric that measures the proportion of the variance in the dependent 

variable that is explained by the model from the independent variables. It represents the extent to 

which the model can explain the variability in the target variable. Under the same assumptions as 

before, the R2 value of the model on the test set Q can be calculated as equation (2): 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

,     𝑤ℎ𝑒𝑟𝑒   �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1                                       (2) 

The R² typically ranges from 0 to 1. An R² of 1 indicates that the model can completely explain 

the variability in the data, while an R² of 0 suggests the model has no explanatory power and cannot 

account for any of the variability in the target variable. 

In the case where the errors in the model's outputs exhibit greater variance than the original 

data, the R² may become negative. This situation implies that the model performs even worse than 

simply using the mean value to explain the data. Since the mean value represents none of the 



variance, this specific model is not an appropriate choice and should not be employed, as it fails to 

provide any meaningful interpretation of the data's variability. 

3.4.2 Hyperparameter Optimization 

The data augmentation method introduced two hyperparameters in this study, the length N 

and the step s. Different hyperparameter values can affect the total number of samples, the length 

of each sample and the similarity among samples. Different training data can result in models of 

different effectiveness. Therefore, it is necessary to determine a set of appropriate hyperparameter 

values through experiments. 

The experiments adopted the controlled variables method, fixing one parameter while 

changing another parameter to observe the effect of change on the same model. 

3.4.3 Model Interpretation Method 

To identify the most salient behavioral features and explain model performance, this study 

employed a SHAP value-based approach to conduct an interpretation analysis on the optimal 

model obtained from the previous experiments. For each sample, a SHAP value can be computed 

for every feature, which quantifies the contribution of that feature to the model's output for the 

given input. The SHAP value represents the magnitude of influence that a particular feature has 

among all the features, in terms of its impact on the model's output. 

For data set Q, let N represent the complete set of all features. Through the training process, 

we have obtained a regression model f. To compute the classical SHAP value 𝜙𝑖(𝑓) for feature i 

with respect to the model output, equation (3) is employed: 

𝜙𝑖(𝑓) = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓𝑠∪{𝑖}(𝑥𝑠∪{𝑖}) − 𝑓𝑠(𝑥𝑠)]

𝑆⊆𝑁∖{𝑖}
                               (3) 

Where S represents a subset of the feature set N excluding feature i. 𝑓𝑠∪{𝑖} and 𝑓𝑠 denote 

additional interpretation models trained on the feature space 𝑆 ∪ {ⅈ}  and S respectively. To 

compute the SHAP value, we must iterate through all possible subsets S, assign a weight to each 

subset, and then sum the weighted contributions to obtain the SHAP value for the feature i. 

Precisely calculating the SHAP values can be quite challenging, especially when the number 

of features is large. Therefore, various approximation methods are commonly employed to 

estimate the SHAP values, while maintaining accuracy and consistency, in order to achieve higher 

computation efficiency [31]. 

A positive SHAP value indicates that an increase in the feature's value leads to an increase in 

the model's output; the larger the SHAP value, the more the model's output increases. Conversely, 

a negative SHAP value implies that an increase in the feature's value results in a decrease in the 

model's output; in this case, the larger the absolute value of the SHAP value, the more the model's 

output decreases. By averaging the SHAP values of a particular feature across all samples, we can 

assess the overall impact of that feature on the model's output. This approach allows us to identify 

the most influential features that have the greatest effect on the model's output. 

For a trained model, we can utilize the Shap package in Python to compute the SHAP values 

for each feature, thereby quantifying their contributions to the model's outputs. By analyzing the 

SHAP values of the behavioral features, we can identify the most important and influential features. 

Combining this information with domain-specific knowledge, we can then provide meaningful 

interpretations of these key features. This approach allows us to gain valuable insights that can 



inform and inspire solutions to real-world problems. The SHAP values serve as a powerful tool for 

model interpretation, enabling us to understand the underlying drivers of the model's output and 

to extract actionable insights from the trained model. 

 

4 Results 

4.1 Integrated Data Set 

The raw data obtained from the students' submitted assignment files were consolidated into 

a unified data set after data cleaning and integration. The resulting integrated data set contains 

design behavior data from 68 students, with each student's data comprising multiple data files, 

each representing a complete Revit session. There is a significant variation in the total data volume 

across different students, as depicted in Figure 4. The average total data length is 58,045 rows, with 

the maximum length approaching 350,000 rows. This disparity in data length highlights the 

necessity of using a window cropping approach during data augmentation to mitigate the impact 

of varying data lengths. 

Among all the samples, two-thirds have total data lengths exceeding 30,000 rows. This 

threshold is used as the initial value for the hyperparameter N in the subsequent experiments. 

 

 
Figure 4. Basic distribution of integrated data set 

 

Based on the aforementioned BIM design quality evaluation methodology, the BIM models 

submitted across 68 assignments were scored. The highest score is 90, the lowest is 52, and the 

mean score is 70.9, with a standard deviation of 7.61. Since the scores were given manually, there 

is an inherent subjectivity that could potentially affect the reliability of the data. Through statistical 

analysis, as illustrated in Figure 5, the scores are shown to conform to a normal distribution. This 

aligns with the typical distribution characteristics expected of scores, thereby affirming the 

reliability of the data set. 



 
Figure 5. Distribution of scores 

 

4.2 Model Comparing and Selection 

Prior to conducting the model selection experiments, it is necessary to first select a set of 

hyperparameter values. Based on the analysis of the integrated data set, the length N was initially 

set to 30,000. With a total of 29 behavioral features selected, and adhering to general guidelines 

suggesting that the number of training samples should be at least 10 times the number of features, 

we concluded that a minimum of approximately 300 samples should be generated through data 

augmentation. Calculations showed that setting s to 5,000 resulted in a total of 493 augmented 

samples, making 5,000 a suitable initial value for s. In the regression model comparison analysis, 

all experiments utilized this same set of hyperparameter values. 

Among the 42 algorithms tested, 14 models yielded R2 less than 0 on the test set, while 6 

algorithms have R2 greater than 0.3, which are relatively better-performing models. These 6 

algorithms all belong to the Ensemble Method category and the R2 of the top five of them on test 

set are larger than 0.5. This result clearly shows that there exists quantitative relationship between 

design behaviors and quality, and these models can to some extent learn the relationship between 

the features and the targeted variable. With a larger sample size generated through data 

augmentation, machine learning models can portray this relationship even better. Figure 6 

presents the 6 best-performing algorithms and their average RMSE and R2 values on the training 

and test sets, obtained through multiple runs. 

 



 

Figure 6. Six best performing models 

 

Among the 6 best-performing algorithms, four of them are tree-based algorithms that achieve 

improved regression performance through the integration of multiple trees with different 

additional strategies and methods. In contrast, the Bagging and AdaBoost algorithms do not use 

fixed type weak regressors, and their core ideas differ from the other four algorithms. 

The best-performing Extremely Random Trees (ExtraTrees) algorithm is an ensemble method 

that constructs multiple decision trees, each trained on a random subset of the features. Unlike 

traditional decision trees, ExtraTrees introduces additional randomness by splitting nodes using 

fully random cut-points, rather than searching for the optimal split [36]. The superior performance 

of the ExtraTrees algorithm in the current study may be attributed to its ability to capture the 

complex relationships within the data, while maintaining good generalization through the 

integration of highly randomized decision trees. 

The Bagging (Bootstrap Aggregating) algorithm is another ensemble method that generates 

multiple base models, typically decision trees, by training each on a random bootstrap sample of 

the original training data. The final prediction is obtained by aggregating the outputs of the 

individual base models, often through averaging. Bagging can effectively reduce the variance of 

the base models, leading to improved predictive performance [37]. 

Considering both the performance of the algorithms and their diversity, the Extremely 

Random Trees (ExtraTrees) algorithm and the Bagging algorithm were selected as the two optimal 

algorithms to be used in the subsequent experiments. This choice was made to leverage the 

strengths of tree-based methods as well as the advantages of the ensemble approach with more 

diverse base models. 

 

4.3 Hyperparameter Optimization Results 

Based on the model comparing analysis, the Bagging and ExtraTrees algorithms were selected 

for further optimization of the hyperparameter values through experiments. 

The experimental results with a fixed N=30000 and varying s are shown in Figure 7. This 

1 0.97 0.94 0.93 0.94

0.68

0.69
0.59

0.55 0.54 0.51

0.38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

2

3

4

5

6

7

8

R
2

R
M

SE

Training Set RMSE Test Set RMSE



indicates that as the step size s increases, the number of samples is significantly reduced, which 

has a substantial impact on the performance of the model training. When s is set to a large value 

of 15,000, the number of samples is only 190, and in this case, both the Bagging and ExtraTrees 

algorithms struggle to achieve good performance. On the other hand, decreasing the value of s 

leads to an improvement in the model's performance. However, when s is set to a very small value 

(e.g., 500), the number of samples becomes so large that decreasing even more can only have a 

limited impact on model's performance, while risking information leakage due to the high similarity 

between samples. This could yield a model that appears to perform better but may have reduced 

reliability. 

 

 
Figure 7. Experiment results of fixed N=30000 and varying s 

 

The experimental results with a fixed step size s=1000 and varying N are shown in Figure 8. By 

controlling the value of the step size s, the sample size can be maintained at a relatively stable level 

without encountering the issue of insufficient samples. When N is reduced, the sample size 

increases, but the performance of both the Bagging and ExtraTrees algorithms declines. This may 

be due to the fact that each sample becomes shorter, resulting in insufficient information and 

increased sensitivity to extreme cases, leading to greater differences between the data samples. 

On the other hand, when N is set to a large value, the performance is already satisfactory, and 

further improvement becomes less prominent. 
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Figure 8. Experiment results of fixed s=1000 and varying N 

 

Based on the comprehensive analysis of the experimental results, the following insights can 

be drawn. When the value of N is fixed, a smaller step size s is generally preferred, as it can lead to 

better model performance. However, setting s too small may potentially compromise the reliability 

of the model. Conversely, when the step size s is kept constant, increasing the value of N leads to 

improved model performance. However, there are diminishing returns beyond a certain value of 

N, as the marginal gains become less significant. Throughout the experiments, the ExtraTrees 

algorithm consistently outperformed the Bagging model in most cases. 

Considering the trade-offs, a suitable value for the hyperparameter N is 30,000, as it can 

provide good model performance without excessively large sample size. For the step size s, a value 

of 2,000 is appropriate, as it can ensure a satisfactory model performance while maintaining a 

reasonable level of reliability. 

With the appropriate hyperparameter settings, the ExtraTrees algorithm-based model 

achieved a RMSE of 2.29 on the test set, which is significantly smaller than the standard deviation 

of 7.61 for the scores in the integrated data set. Additionally, the model attained an R2 value of 

0.88, indicating its strong explanatory power. The above results further proved that there is a clear 

quantitative relationship between design behavior and design quality. The machine learning 

models employed in this study are capable of learning the relationship between the sample 

features and their corresponding scores, and can provide reliable score estimates for the test 

samples. 

 

4.4 Model Interpretation 

Based on the experiment results, this study conducted a model interpretation analysis 

focused on the ExtraTrees algorithm with the optimized hyperparameter values. The analysis 

involved calculating the SHAP values for all features across all samples, and then aggregating the 

SHAP values for each feature to assess its impact on the model's output. 
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Figure 9 depicts the absolute SHAP values for each feature. The vertical axis represents the 14 

most influential features, ranked in descending order based on the average absolute SHAP value. 

The final row in the plot corresponds to the aggregated SHAP values for the remaining 15 features. 

 
Figure 9. Absolute SHAP value for all features 

 

Overall, the data density features have a greater impact on the model compared to the time 

density features. The sequential nature of the data may not be effectively reflected through 

statistical methods, which lead to the features used in this study having difficulty capturing more 

information along the time dimension. The features ranked at the top are mainly related to 

command execution, while features related to model components manipulation have relatively 

less influence. This suggests that the design behavior of executing commands is of great 

significance for analyzing the characteristics of the designer, as it may reflect the designer's focus, 

proficiency, and other factors, which ultimately impact the final design quality. 

The execution methods of different design commands may have varying degrees of impact on 

design quality, due to their differing usage frequencies. For example, during the execution of most 

commands, interactions with dialog boxes, often involving button clicks, are common. This feature 

is highly correlated with the designer's command execution behavior, and the pushbutton% feature 

derived from this data can have a more pronounced impact on design quality. In contrast, the usage 

of keyboard shortcuts in Revit software is not as prevalent and convenient as in CAD software for 

2D design. Only a few common shortcuts are typically used, and keyboard shortcuts are not 

frequently employed during the execution of most commands. Consequently, the data related to 

accelerator key usage (accelkey%) is not strongly associated with the commands, and thus, it has a 

relatively smaller influence on design quality. 

Figure 10 shows the SHAP values for the corresponding features of each sample. The SHAP 

values can be positive or negative, and the color of the points reflects the magnitude of the feature 

values. Redder points indicate larger feature values, while bluer points indicate smaller values. The 

sign of the SHAP values (positive or negative) reflects the directionality of the relationship between 

the feature and the model output, i.e., whether the feature is positively or negatively correlated 

with the model prediction. If the distribution of blue and red points for a particular feature exhibits 

clear separation or distinction, it can provide important insights. By combining the analysis of data 

features with the potential scenarios that may be encountered in the design process in practice, 

abstract data features can be transformed into implications that possess certain practical guiding 



significance. Based on the most influential features obtained from model analysis, the following 

two implications can be drawn.  

 

 

Figure 10. SHAP value for the most influential 20 features 

 

1）Enhancing designers' design proficiency not only improves design efficiency but also 

enhances design quality. 

For the majority of samples, the pushbutton% feature values are relatively low, yet they 

exhibit a positive correlation with the model output. Moreover, a considerable number of samples 

have SHAP values for this feature reaching as high as 4. This suggests that the student population, 

as a whole, lacks proficiency in command execution, leading to a smaller proportion of command 

execution operations in the sample data. Improving proficiency and increasing the efficiency of 

command execution can significantly enhance the quality of the designs. 

For the ribbon% feature, there are more samples with evidently higher feature values 

compared to the pushbutton% feature. For these samples with elevated ribbon% values, the 

feature is generally negatively correlated with the model output. As novice users, students are not 

familiar with methods of command execution, such as keyboard shortcuts, and tend to rely more 

on explicitly clicking the command buttons in the ribbon menu bar to execute commands. This 

further indicates that learning and utilizing keyboard shortcuts, while reducing the dependence on 

the ribbon menu buttons, can improve modeling efficiency. In engineering practice, there is a 

significant difference in the efficiency of command execution among designers with different skill 

levels. Efficient command execution relies on the use of shortcuts, which reduces the reliance on 

mouse clicks and thereby simplifies the execution process of certain commands [26]. In this study, 

the features related to command execution methods demonstrate that enhancing modeling skills 

and reducing the frequency of manual key presses not only reflect an improvement in modeling 

efficiency but also manifest in the enhancement of model quality. There exists a simultaneity 

between the improvement in modeling efficiency and quality. 

2）Mature design intentions before the start of the design process can reduce rework and 

improve design quality. 

The three features - delete_times%, add_times%, and modify_times% - also exhibit some 



regularities. These three features show that the majority of samples are concentrated at relatively 

low values. However, the density of addition and modification times is positively correlated with 

modeling quality, while the density of deletion times is negatively correlated. A considerable 

number of deletions represent significant rollback and rework in modeling progress, which usually 

imply major changes of design intentions. This data feature suggests that reducing such major 

changes of design intentions may help improving design quality. In engineering practice, changes 

of design intentions may be due to many different reasons. Designers may initially lack a sufficiently 

clear understanding of the design intentions, leading them to work along a misguided path. Sudden 

changes of requirement during the design process, or a shift in the designer's own thinking, can 

also lead to major changes of intentions. All these causes suggest the importance of mature and 

stable design intentions. Prior to the design process, it is imperative for the designer to thoroughly 

comprehend the design requirements and to establish relatively mature design intentions after 

careful consideration. Maintaining the stability of the design intentions and minimizing the 

occurrence of significant changes can not only ensure the overall efficiency but also help ensure 

design quality.   

Additionally, certain data features remain challenging to interpret. The differences in the 

distribution of different-colored points for the transsuccess% and accelkey% features are not very 

obvious. This may be because the current study did not further subdivide the submitted 

transactions and the specific functionality of the shortcuts, which may have resulted in the 

inclusion of some actual ineffective transactions or shortcuts as noise data, weakening the 

regularity of the feature's impact on the model. For example, designers may unconsciously develop 

a habit of frequently pressing the "Esc" key, which would also be recorded as a "cancel" shortcut 

and included in the statistics. However, in most cases, pressing the "Esc" key does not have any 

actual meaning or effect, and does not reflect the behavioral characteristics. 

 

5 Discussion 

Design behavior data and design quality are logically intertwined, and there have been 

numerous related studies in many other fields. However, in the AEC domain, there is a lack of 

research directly associating design behaviors with design quality. 

This study used machine learning methods to directly establish a quantitative relationship 

between design behavior and design quality. We proposed corresponding solutions to various 

issues, such as the source of design behavior data, data preprocessing and design quality 

evaluation. Finally, quantitative models were established proving a clear relationship between 

design behavior and design quality, and interpretation analysis of the best-performing model was 

conducted, leading to a number of further insights. 

The proposed method employed in this study has the potential for broader application 

beyond the specific context investigated. The quantitative modeling and interpretation analysis 

methods can be adapted and extended to address other relevant issues in this professional field. 

For example, the relationship between design behavior data and design efficiency, or the 

relationship between construction process and the quality of finished building. These topics can 

be investigated by collecting user behavior data from relevant software and conducting 

quantitative modeling to explain and predict the outcomes of these behaviors. Furthermore, the 

quantitative model proposed in this study reveals how specific design behaviors impact design 



quality, which can provide a solid foundation for further research in the field of design process 

management focusing on how to actively monitor and adjust design quality and efficiency. 

The key features identified through the use of model interpretation method for machine 

learning models, as well as the ways in which these features influence the model outputs, can help 

us understand how designers' behaviors impact design quality. By considering the practical 

challenges that designers may face, we can link high deletion density to major changes of design 

intentions, and associate the frequency of shortcut and button clicking behaviors with designers' 

proficiency. This reveals the connection between data-driven conclusions and real-world practical 

issues. However, this analysis cannot explain some unexpected results and these conclusions 

require further qualitative research, such as interviews, questionnaires, and surveys, to effectively 

supplement and support findings related to designers. In the future, qualitative studies focusing 

on designers' behaviors could provide valuable new insights for this knowledge domain, deepening 

our understanding of the intrinsic mechanisms that determine outcomes in complex design 

processes. 

This study has some limitations and issues that require further studies: 

1) The data acquired is insufficient in volume, making it challenging to support the training of 

more complex deep learning algorithms with higher data requirements. 

2) The designers studied were students, whose modeling capabilities may not be 

representative of the industry standard. More diverse data samples are needed to improve the 

accuracy of the models in real-world scenarios. 

3) Design behavior data has a strong sequential characteristic, which the statistical features 

may have difficulty capturing. Exploring sequential analysis methods, such as Recurrent Neural 

Network and Long Short-Term Memory Network, could be a valuable direction for further research. 

 

6 Conclusions 

Regarding design quality management in the AEC industry, there is a research gap in 

understanding how design behaviors impact design quality. To identify and quantitatively describe 

the relationship between design behavior and design quality, this paper proposed an approach 

integrating log data and real-time data collection to acquire BIM design behavior data, as well as a 

quantitative evaluation system for BIM modeling design quality. Feature engineering and machine 

learning model interpretation were leveraged to establish quantitative regression models, and 

identify key features and behavioral characteristics that have a significant impact on design quality. 

The key conclusions of this study are threefold. First, this study confirmed a quantifiable 

relationship between design behaviors and design quality outcomes for the first time, addressing 

the mentioned research gap. This contributes to the body of knowledge by transforming the 

nebulous logical connection into concrete, measurable models.  

Second, machine learning models can accurately describe these relationships. The best-

performing machine learning model constructed using the Extremely Random Trees algorithm was 

able to assess design quality based on the design behavior features, achieving an R2 value of 0.88 

on the test set, demonstrating the model's strong explanatory power. This modeling capability 

provides a solid foundation for future research on design quality management process. 

Third, our analysis identified the critical design behavior features that most significantly 

impact final design quality. Through interpretation analysis of the model, the data density features 



related to the execution of design commands and manipulation of model components were found 

to have the most important influence on design quality. This analysis also empirically supports the 

notion that improving designers' skill levels, as well as ensuring more mature design intentions 

prior to the design process, can effectively reduce rework and improve overall design quality. These 

insights deepen our understanding of the underlying reasons for varying levels of design quality in 

the design workflow, and offer guidance for ensuring design quality. 

Future research may focus on qualitative analysis on the topic, exploring additional algorithms 

and techniques to further enhance the predictive power of the models, potentially considering the 

sequential nature of design behaviors. Larger and more diverse datasets would support the 

utilization of even more sophisticated models. 
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