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Abstract

The rapid deterioration of building facades presents substantial safety hazards in urban
environments, necessitating advanced, automated inspection solutions. While computer
vision (CV) and deep learning (DL) techniques have shown promise for defect analysis,
critical gaps remain in achieving real-time, quantitative, and generalizable damage assess-
ment suitable for robotic deployment. Current methods often lack precise metric quanti-
fication, struggle with diverse material appearances, and are computationally intensive
for on-site processing. To address these limitations, this paper introduces a fully auto-
mated, end-to-end inspection framework integrating a wall-climbing robot, a real-time
vision-based analysis system, and a digital twin management platform. The primary con-
tributions are threefold: (1) a novel, fully integrated robotic framework for autonomous
navigation, multi-sensor data collection, and real-time analysis; (2) a lightweight, syn-
thetic data-augmented DL model for real-time defect segmentation and metric quantifica-
tion, achieving a mean Average Precision (mAP) of 0.775 for segmentation, an average
defect length error of 1.140 cm, and an average center position error of 0.826 cm; (3) a
cloud-based digital twin platform enabling quantitative defect visualization, spatiotem-
poral traceability, and data-driven project management, with the on-site inspection cycle
demonstrating a responsive latency of 2.8-4.8 s. Validated through laboratory tests and
real building projects, the framework demonstrates significant improvements in inspec-
tion efficiency, quantitative accuracy, and decision support over conventional methods.

Keywords: wall-climbing robot; facade inspection; defect segmentation; digital twin;
project management

1. Introduction

Regular and effective inspection of building facades is a significant procedure in
building health monitoring. Traditional wall inspection techniques rely mostly on work-
ing at heights. Construction workers are suspended from the roof and wall elements are
inspected using human eyes or handheld equipment. In recent years, the Architectural,
Engineering, Construction, and Facility Management (AEC/FM) industry has seen a
growing trend of automation with robotics. Various robot vehicles have been investigated
for monitoring and inspection tasks in as-built facilities, such as Unmanned Aerial
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Vehicles (UAVs) [1-3], wheeled robots [4,5], quadruped robots [6,7], etc. They are usually
equipped with cameras or laser scanners to collect images [8,9] or point cloud data [10,11]
for post-processing.

UAVs are widely utilized in building facade inspection. However, they are not ap-
plicable under weak Global Navigation Satellite System (GNSS) signals (e.g., close high-
rise buildings) or in no-fly zones (e.g., around airports or military zones). In addition,
UAVs are not suitable for carrying contact-based sensors as they need to maintain a safe
distance from walls. Suspended platforms are alternative solutions that can carry human
workers or automation equipment such as robot arms [12]. However, suspended plat-
forms require pre-installation of heavy block-and-tackle systems, and they are not flexible
in horizontal movement. As a result, a wall-climbing robot, which directly moves on ver-
tical surfaces in any desired orientation and enables inspection sensors with multiple mo-
dalities, is proposed as the robot platform for automated wall inspection.

The purpose of wall inspection is to recognize, measure, and locate defects of exterior
walls, including cracks, spalling, etc. Traditional inspection techniques rely on human
workers for decision making, which is subjective and inefficient. In recent years, the de-
velopment of deep learning models such as Convolutional Neural Network (CNN) [13]
has made it possible to automatically detect and segment wall defects from images. In
addition, computer vision algorithms such as Structure-from-Motion (SfM) can accurately
determine the camera’s motion and locate defect features. However, current defect detec-
tion techniques suffer from limitations in both spatial and temporal accuracy. Spatially,
conventional techniques fail to provide precise quantitative data, such as the exact size,
location, and shape description of defects. They also lack the generalization ability to di-
verse surface materials. Temporally, the inspection results of a building are not updated
regularly to reflect subsequent maintenance or renovations in a timely manner. To address
these shortcomings, a customized defect segmentation technique and an intelligent pro-
ject management system are required. The proposed solution can accurately analyze the
data collected by a wall-climbing robot in real time and verify an up-to-date digital twin
model of the building.

To address these challenges, this study introduces an automated inspection frame-
work for building exterior walls. As illustrated in Figure 1, the proposed framework com-
prises three key components: (1) a wall-climbing robot employing negative pressure ad-
hesion technology, equipped with visual and penetrating sensors; (2) a ground station
that facilitates multi-sensor data processing through deep learning-based defect detection
algorithms and quantitative analysis; and (3) a cloud platform that leverages digital twin
representations to enable quantitative defect condition assessment and inspection project
management.

Figure 1. [llustration of the proposed framework.

The major contributions of this study are summarized as follows:
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(1) Afully automated, end-to-end facade inspection framework that integrates climbing-
robot navigation, multimodal data collection, real-time analysis, and as-is model up-
dating.

(2) A lightweight deep learning model for real-time defect segmentation and metric
quantification, supported by a novel, generative-augmented open dataset designed
for wall defect detection.

(3) A digital twin-based project management platform that unifies data integration, vis-
ualization, and user interaction, significantly improving inspection efficiency, trace-
ability, and decision support over traditional methods.

The remainder of the paper is organized as follows: Section 2 gives a comprehensive
literature review; Section 3 describes the proposed methodology; Section 4 demonstrates
the experiment validation; finally, Section 5 gives the conclusion, limitations, and future
works.

2. Literature Review

This section provides a literature review on different inspection vehicles, detection
algorithms, and digital twin techniques, as presented in Sections 2.1-2.3, respectively.

2.1. Wall Inspection Vehicles

There have been growing attempts in the AEC/FM industry to conduct exterior wall
inspection using automated vehicles. UAV is a popular choice in inspection of high-rise
buildings, bridges, and various infrastructure. For example, Bolourian et al. [14] proposed
a UAV path planning framework for aerial laser scanning and bridge inspection. Tan et
al. [15] proposed a UAV-based framework to collect images of building surfaces. Their
work was further extended to achieve mapping and modeling of defect data [16]. How-
ever, the presence of no-fly zones and payload restrictions are two major disadvantage of
UAVs. Therefore, some researchers focused on wall-climbing robots as an alternative so-
lution, due to their flexibility, durability, and payload capacity.

Wall-climbing robots are typically categorized into four types based on their adhe-
sion mechanisms [17]: magnetic, negative pressure, electrostatic, and bio-inspired adhe-
sion. Negative pressure adhesion is the preferred method for wall inspection robots, as it
offers high payload capacity and is effective on a wide range of common building surface
materials [18]. The core principle of negative pressure adhesion involves generating a
pressure difference between the sealed chambers under the robot and the external envi-
ronment. This creates a suction force that enables the robot to remain firmly attached while
moving.

Recent research has demonstrated the effectiveness of wall-climbing robots in build-
ing inspection applications. For example, Yang et al. [19] proposed a wall-climbing robot
for concrete inspection and utilized an RGB-D camera for 3D point cloud reconstruction.
Hu et al. [20] proposed a coverage-oriented path planning technique for wall-climbing
robots to improve the efficiency of inspection tasks. However, these methods did not re-
alize quantitative analysis of defect types, shapes, and locations. This study aims to de-
velop an integrated robotic platform capable of precise localization, autonomous naviga-
tion on vertical surfaces, and automated wall defect inspection.

2.2. Defect Detection Algorithms

Developments in deep learning and computer vision have pioneered automated de-
fect detection using image data. CNN-based models were first investigated for classifica-
tion, bounding box detection, and pixel-level segmentation tasks. For example, He et al.
proposed Mask R-CNN [21], which improved over bounding box detection models [22]
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by adding a segmentation head and became a benchmark for instance segmentation tasks.
Redmon et al. proposed YOLO (You Only Look Once) [23], which innovatively combined
the region proposal and classification steps into one network structure. It significantly im-
proved inference speed and became the dominant model for real-time object detection.
These CNN-based models have been verified in crack detection tasks for buildings [24]
and infrastructure [25].

Since the introduction of Transformer [26], models based on a self-attention structure
have become popular in deep learning. Transformer-based models such as Vision Trans-
former (ViT) [27], RT-DETR [28], and Grounding-DINO [29] were soon introduced into
visual tasks and achieved impressive accuracy and generalization ability. Chu et al. [30]
proposed a Transformer-based model to improve the accuracy of crack segmentation for
bridges. Zim et al. [31] proposed to combine CNN and Transformer into one hybrid model
and applied it for crack segmentation tasks. Although these studies demonstrated im-
proved performance, Transformer architecture usually requires extensive training da-
tasets and substantially greater computational resources for both training and inference
compared to convolutional models. This is not favored for on-site applications, where the
best available computational device could be a laptop. Therefore, this study proposes to
train lightweight models such as YOLO on domain-specific datasets, aiming to achieve
sufficient accuracy and real-time processing on low computational resources.

2.3. Digital Twin Applications

Digital twin technology transforms traditional facility management by creating a dy-
namic, virtual replica of a physical asset. It shifts management from a reactive, experience-
based approach to a proactive, data-driven system. Foundational construction represen-
tations like Building Information Modeling (BIM) and Geographic Information Systems
(GIS) [32] often serve as the geometric and semantic backbone for these digital twins. The
application of this technology spans several domains. In robotics, for instance, Chen et al.
[33,34] incorporated physics engines to simulate and optimize coverage path planning for
wheeled inspection robots, improving both accuracy and efficiency. Wang et al. [35,36]
proposed a hardware-in-the-loop simulation environment for mobile laser scanning using
Unreal Engine. Another significant area of development is human-machine interaction.
Liu et al. [37] combined UAV-captured images with augmented reality to conduct build-
ing inspection. Alizadehsalehi et al. [38] proposed a progress monitoring framework
adopting digital twin and extended reality. For example, Tan et al. [39] introduced a
mixed-reality platform that enhances user engagement through intuitive interactive op-
erations.

However, many existing systems exhibit limited interoperability with robotic opera-
tional data, including positional coordinates, control commands, and raw sensor streams.
To address this gap, this study proposes a digital twin-based system for wall inspection
and structural health monitoring. The framework enables not only qualitative assessment
but also delivers quantitative metrics, such as defect dimensions and precise location data
within a fixed coordinate system.

3. Methodology

This section describes the proposed methodology in four parts: hardware and soft-
ware systems, image-based inspection, and project management. They are detailed in Sec-
tions 3.1-3.3, respectively.
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3.1. System Architecture

The wall-climbing robot in this study utilizes negative pressure adhesion for surface
attachment. Its locomotion system consists of two impellers that generate vacuum pres-
sure and four wheels enabling lateral movement (Figure 2). The platform houses an Ultra-
wideband (UWB) radar on one side and features a mounting base supporting an extended
rod with a camera sensor. The robot is directly powered with cables to ensure long dura-
bility. The sub-modules of the robot system are described as follows:

(1) Sensing subsystem

The robotic platform is equipped with a multi-modal sensor set combining contact
and non-contact technologies for comprehensive building inspection. An RGB and infra-
red (IR) camera simultaneously captures both visible light and infrared radiation, ena-
bling concurrent detection of surface defects such as cracks and spalling through visual
analysis, and subsurface defects such as hollowing through thermal variations. The UWB
radar complements this by penetrating building materials to reveal hidden voids and de-
lamination within deeper construction layers. This strategic sensor fusion provides cross-
validation capabilities across different physical modalities, significantly enhancing in-
spection reliability and defect characterization accuracy. The current study focuses specif-
ically on RGB image data acquisition and processing pipeline development.

(2) Localization subsystem

Accurate localization is a fundamental prerequisite for path planning and scene re-
construction, as a robot must precisely determine its position to execute navigation com-
mands effectively. For wall-climbing robots operating in outdoor environments, GNSS
positioning (e.g., Global Positioning System (GPS), BeiDou, etc.) provides a viable locali-
zation framework. However, typical GNSS solutions offer only meter-level accuracy,
which is insufficient for detailed inspection tasks on building exteriors. Therefore, this
study employs Real-Time Kinematic (RTK) technology to enhance GNSS positioning pre-
cision. The RTK method establishes a fixed base station at a known, precisely surveyed
location (i.e., a geodetic marker). This base station calculates real-time error corrections
for satellite signals and broadcasts them to the robot’s GNSS receiver, enabling centime-
ter-level positional accuracy in real-time. Furthermore, a coordinate calibration was per-
formed prior to each inspection task to transform the global geodetic coordinates (longi-
tude, latitude, altitude) into a local building reference frame (x-y-z, as illustrated in Figure
3), with its origin defined at the bottom-left corner of the target wall.

To complement the positional data and determine the robot’s orientation, an Inertial
Measurement Unit (IMU) was installed at the robot’s center. By measuring the direction
of gravity, the IMU provides the robot’s body orientation. This information, combined
with the RTK position, allows for the precise derivation of the onboard camera’s location
at each timestamp relative to the robot’s center. This integrated sensor calibration ensures
that every image captured during inspection can be accurately geotagged within the
building’s coordinate system.

(3) Planning subsystem

The robot’s inspection path was generated using a coverage-oriented planning tech-
nique, modified from our previous work [34]. This approach involved segmenting the
vertical wall surface into candidate regions and performing a global optimization to guar-
antee complete coverage while minimizing the total path length, resulting in a zig-zag
trajectory. The path planning module also incorporates an emergency stop mechanism,
which is triggered upon encountering non-traversable regions (e.g., windows) to ensure
operational safety.
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(4) Ground station

The ground station, operating on a gaming laptop with a graphics card, handles data
visualization, deep-learning inference, and human-machine interaction. Inspection tech-
nicians can either teleoperate the robot to inspect specific areas or activate autonomous
mode to execute coverage path planning, collecting multi-source data at predetermined
intervals. Concurrently, a specially trained image segmentation model processes visual
data in real-time to identify wall defects. The resulting pixel-level segmentation masks are
combined with camera parameters to calculate accurate metric dimensions for each defect.
Through timestamp synchronization, these defects are precisely mapped to wall coordi-
nates using robot localization data and visualized within a digital twin system.

(5) Cloud platform

The ground station maintains regular synchronization with a cloud-based facility
management platform, enabling dynamic updates of inspection results to the digital twin
model. This integrated platform supports comprehensive project management capabili-
ties, including task allocation, personnel coordination, and equipment monitoring,
thereby facilitating full digital transformation throughout the building lifecycle manage-
ment process.

(.

z X ——

Figure 3. Localization and path planning modules.
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3.2. Image-Based Defect Inspection

This section describes a three-step inspection process: defect extraction from images
(Section 3.2.1), defect size quantification (Section 3.2.2), and localization on walls (Section
3.2.3).

3.2.1. Deep-Learning Defect Segmentation

This study employs visual inspection, as imagery most closely aligns with human
perception. In addition, camera sensors offer a compact, cost-effective, and practical solu-
tion for integration into wall-climbing robots. Recent advances in visual deep learning
have shown substantial advances in classification, detection, and segmentation tasks. Spe-
cifically, the wall inspection task is formulated as an instance segmentation problem, re-
quiring the model to predict a class label, a bounding box, and a pixel-wise mask for each
defect present in an image.

In this study, two types of critical wall defects are considered: cracks and spalling.
Cracks usually arise from material shrinkage, uneven structural settlement, or repeated
thermal-humidity cycles. They may create pathways for water infiltration, accelerate ma-
terial degradation, and undermine the wall’s waterproofing capacity. Structurally, un-
addressed cracks can propagate under stress, reducing the wall’s load-bearing efficiency
and compromising overall structural stability. Spalling, on the other hand, involves the
detachment of surface layers (e.g., plaster, concrete cover) from the substrate, typically
caused by bond failure between layers, water expansion in pores, or corrosion-induced
expansion of embedded steel. For facades, spalling causes direct surface damage and ex-
poses the underlying structure to environmental aggressors (e.g., moisture, pollutants).
Structurally, it weakens the protective layer of load-bearing components, accelerates rein-
forcement corrosion, and induces progressive structural deterioration, posing long-term
safety risks to the building [40].

However, the existing datasets for defect segmentation are not well suited for climb-
ing-robot inspection due to several critical gaps: (1) they lack tight-shot, close-range wall
images that match the constrained field of view of an onboard robotic camera; (2) they
exhibit a highly unbalanced class distribution, with cracks much more frequently found
than spalling instances; (3) their limited material diversity hinders model generalization
(e.g., spalling in public datasets often exposes concrete aggregates, whereas real-world
facade spalling may reveal underlying insulation or other materials.)

To address these limitations, this study constructs a tailored dataset [41] by merging
multiple public benchmarks with self-collected images captured via handheld devices
and drones. Further, emphasis is placed on balancing class representation and enhancing
the diversity of spalling defects. The dataset is further augmented using geometric trans-
formations and generative models such as Stable Diffusion to improve robustness and
generalization [42].

This study employed typical instance segmentation models to automatically detect,
classify, and segment crack and spalling defects from monocular images. Given the con-
strained computational resources typically available in construction environments, our
implementation prioritizes lightweight architectures capable of real-time inference on
portable devices. The YOLO series, recognized as the industry standard for real-time ob-
ject detection, was selected for its exceptional computational efficiency. Unlike conven-
tional two-stage detectors that perform region proposal and classification sequentially,
YOLO utilizes a unified neural network that simultaneously predicts bounding boxes and
class probabilities in a single forward pass. Specifically, we adopted YOLO12 as our base
architecture due to its innovative attention-centric design that replaces standard convolu-
tional layers with more efficient gated attention mechanisms. This architectural advance-
ment achieves state-of-the-art detection and segmentation accuracy while maintaining
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computational efficiency comparable to previous versions such as YOLO11. The detailed
dataset information and training strategies are examined in the Validation section.

3.2.2. Real-World Metric Quantification
(1) Size quantification

Following defect segmentation, the subsequent task is to determine the precise di-
mensions and spatial position of each defect instance. Our methodology adopts the pin-
hole camera model, which mathematically describes how 3D scenes are projected onto a
2D image plane through a perspective transformation. However, monocular imagery in-
troduces a fundamental limitation: a single image cannot resolve the metric scale of indi-
vidual pixels without depth information, as different objects occupying the same view
frustum produce identical 2D projections (Figure 4). This scale ambiguity presents a sig-
nificant challenge for quantitative structural assessment.

Figure 4. Objects with unknown depths appear identical in the camera’s view.

Fortunately, our inspection scenario incorporates two key constraints that resolve
this inherent limitation. First, all target defects are essentially two-dimensional features
co-planar on the wall surface. Second, the robot’s mechanical design maintains a fixed
perpendicular orientation between the camera axis and the wall plane throughout opera-
tion. This engineered configuration enables us to treat the depth parameter as a known
constant, i.e., the perpendicular distance from the camera lens to the wall surface. This
effectively eliminates the need for additional depth sensors.

As illustrated in Figure 5, this setup establishes a direct geometric relationship where
each feature point in the 3D camera coordinate system (Xc, Y¢, Zc) corresponds to a pixel
location (ui, vi) on the 2D image plane through projective geometry. Using Equation (1),
where Z. represents the fixed camera-to-wall distance, A denotes a scale factor, and fx, fy,
Cx, Cy are the pre-calibrated camera intrinsic parameters, we can solve for the actual phys-
ical dimensions Xc and Y.. This approach effectively establishes the metric scale of each
pixel, enabling accurate quantification of defect sizes and positions in real-world units
rather than pixel counts, thereby providing structurally meaningful measurements for en-
gineering assessment.

Image

coordinate N

K Yo 20)

Z| (cxcy1) | oOptical axis
Y

Camera
coordinate
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Figure 5. Pinhole camera projection from the camera’s coordinate to the image plane.

U; fx 0 Cy 0 );C
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1 0 0 1 0 lc

(2) Shape description

After quantification of pixel dimensions, a targeted geometric approach is applied on
each defect to extract shape descriptions. This study employs classical machine learning
algorithms to derive key representative parameters due to their high efficiency. Although
deep learning algorithms such as autoencoders [43] are capable of non-linear dimension-
ality reduction and automated geometry description, they introduce additional GPU over-
head. Given that the system already supports a computationally intensive instance seg-
mentation model, the use of lightweight classical algorithms provides an effective balance
between accuracy and processing efficiency.

For linear, irregular defects such as cracks, it is essential to first define their length
and width. A skeletonization method is employed, which extracts the morphological skel-
eton from the defect contour. The skeleton is a 1-pixel-wide centerline that preserves the
topology of the original shape. It can be obtained through an iterative thinning process.
This process peels away boundary pixels until only the medial axis remains, and connec-
tivity is preserved throughout this operation. The total crack length is determined by sum-
ming the lengths of all connected skeletal segments. For complex, networked patterns like
alligator cracks, the longest continuous span is used as the representative length. The local
width at each skeleton point is found by measuring the distance to the contour along the
normal direction. These local widths are then averaged to represent the overall crack
width.

For regional defects such as spalling, the Principal Component Analysis (PCA) algo-
rithm is applied on segmented pixels to determine the major and minor axes from the 2D
pixel distribution. PCA works by identifying orthogonal directions of maximum variance
in the data through eigenvector decomposition of the covariance matrix. The first princi-
pal component (the largest eigenvector) represents the length direction as it captures the
direction along which the spalling pixels exhibit the greatest spatial spread. Then, the or-
thogonal axis (the second eigen vector) defines the width direction. Further, spalling de-
fects are evaluated using their area, calculated as the total count of segmented pixels. The
metric quantification for crack and spalling defects is illustrated in Figure 6.

Figure 6. Size quantification for crack (a) and spalling (b) using skeleton extraction and PCA algo-

rithm, respectively.

https://doi.org/10.3390/xxxxx



Buildings 2026, 16, x FOR PEER REVIEW 10 of 23

3.2.3. Robot and Defect Localization

Defect positions are determined through a sequential coordinate transformation pro-
cess that establishes precise spatial relationships across multiple reference frames. Each
defect’s location, initially identified by the bounding box center in the camera coordinate
system, undergoes a geometric transformation to ultimately reach the building coordinate
system. The process begins with the transformation to the robot’s body frame using the
known geometric configuration of the mounting rod, characterized by translation vector
Tr and rotation matrix Re. This intermediate step aligns defect positions with the robot’s
structural framework.

Subsequently, the position is transformed to the global building coordinate system
using the robot’s pose relative to the wall, defined by transformation parameters Twr and
Rwr, as illustrated in Figure 7. The camera-to-robot rotation matrix R is derived from the
known mechanical inclination angle Oc, while the translation vector Tr is determined from
physical design configurations. Similarly, the robot-to-wall rotation Rwr is calculated from
the inclination angle Or measured by the IMU relative to gravity, and the translation Twr
is provided by the high-precision RTK positioning system, calibrated to the wall’s bottom-
left corner as the coordinate origin.

Figure 7. Camera-to-wall coordinate transformation.

Equation (2) demonstrates the comprehensive homogeneous coordinate transfor-
mation from camera coordinates (X, Y, Zc) to wall coordinates (Xw, Yw, Zw). The rotation
matrices are rigorously derived using the Z-Y-X Euler angle formulation Rot (yaw, pitch,
roll), with detailed mathematical expressions provided in Equations (3) and (4). This
multi-stage transformation chain enables precise defect localization within the architec-
tural context, facilitating accurate documentation and subsequent maintenance planning.

Xw X Xe
YW — RWT TWT YT — RWT TWT RTC TTL' YC
Z, [0 1]Zr [0 1”0 11|z, @)
1 1 1
T
ch = Rot (E - 96! 0, 7'[)3)(3 (3)
s
R,, = Rot (5 +6,,0, 0)3X3 @)
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3.3. Digital Twin Project Management

The project management platform serves as a dynamically synchronized, interoper-
able data center within the proposed framework. It is designed to support the automated
analysis of exterior wall defects across complex scenarios such as multiple buildings, di-
verse equipment, and concurrent tasks. A central component of this platform is the up-to-
date digital twin model, which provides immersive 3D visualization and unified data in-
tegration. This model loads high-precision as-designed building models (e.g., from
SketchUp or Revit) and spatially maps the processed defect inspection results, including
precise locations and diagnostic information, onto the corresponding facades. This inte-
gration enables users to interactively explore the building’s health status from any view-
point and drill down into specific defects. Detailed diagnosis is supported by quantitative
evidence, such as the original inspection imagery and algorithmically generated annota-
tions. This cohesive integration of data management and immersive visualization facili-
tates comprehensive assessment and informed maintenance decision-making.

The proposed platform has a modular architecture consisting of four core compo-
nents (Figure 8):

1. Building Management: This module maintains a hierarchical structure of building
assets: from building complexes, individual buildings, to specific wall facades. Users
can dynamically create and configure relationships between different data objects,
supporting multi-facade and multi-round inspections.

2. Equipment Management: This module registers and tracks the status of inspection
devices, including basic information (e.g., serial numbers) and algorithmic parame-
ters (e.g., camera parameters), to ensure proper allocation and algorithm compatibil-
ity of equipment.

3. Personnel Management: This module utilizes role-based access control to define user
permissions and data visibility, enabling secure multi-team, multi-level collaborative
scenarios.

4. Task Management: This module is the core component that manages the end-to-end
inspection workflow from task creation to result presentation. It automatically links
relevant building attributes and seamlessly integrates raw sensor data, detection re-
sults, and quantitative measurements into a structured data presentation. Based on
industry standards and historical records, the platform supports informed decision-
making and maintenance scheduling.

. i » North Facade
= Building > Enangongyuan > Building 310 > East Facade 1
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"EJ — —
=z u ¥ Climbing Robot ' '
o2 Equipment v RGB Camera I
-z
O«
s
o v C.Song
% B Personnel v Y. Shi \l‘
= uw
=
2
o » New Inspection
Task 20251209 “‘

Digital Twin
Figure 8. Functional modules of the project management platform.

The platform is built on a client-server architecture that separates the frontend and
backend components, enhancing both maintainability and scalability. The frontend User
Interface (UI) is developed with the Vue framework using a layered design, while the
backend employs a Spring Boot-based microservices architecture to provide secure and
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robust Application Programming Interface (API) services. Its core technical components
and their interactions are outlined in in Table 1. This structure ensures a high-performance,
secure, and modular platform capable of supporting complex, multi-step inspection
workflows.

Table 1. Software architecture of the platform.

Component Layer

Implementation Primary Functions

Frontend UI

Backend API & Core Services

Provides a fast, intuitive interface for real-time data visualiza-
Vue 3.5 .
tion and control.

Spring Boot 2.5 & JWT Ensures reliable, secure access and smooth operation of all ap-

0.9 plication features.
Data & File Management MyBatls.2.2, Redis 6.2, Enables quick search, stable access, and efficient handling of
MinlO 8.5 large models and reports.
4. Validation

This section presents the experiment setups and results in Sections 4.1 and 4.2, re-
spectively.

4.1. Experiment Setup
4.1.1. Site Information

The proposed framework is validated in both laboratory tests and a building facade
inspection project. The experimental validation was performed in a construction labora-
tory located in Daxing, Beijing, where several prefabricated wall elements with precisely
introduced crack and spalling defects of varying severity were selected as test specimens.
To establish reliable ground truth measurements for quantitative performance evaluation,
the actual dimensions of these artificial defects were manually measured using high-pre-
cision laser range finders.

The field validation was conducted on a residential building in Tongzhou, Beijing.
The building exhibits typical facade defects, including minor cracks and spalling. The
original SketchUp architectural design drawings of the building were obtained prior to
the experiment. They were converted into a digital twin model to support facility man-
agement operations and provide spatial context for localization. For the experiment, the
north facade (Figure 9) was selected for robotic inspection due to its uniform exposure to
environmental factors and accessibility. The wall-climbing robot commenced operations
from the bottom-left corner of the designated wall area, executing a pre-programmed zig-
zag coverage path that systematically traversed the entire vertical surface. During navi-
gation, onboard sensors collected synchronized multi-modal data streams: the camera
captured monocular RGB images at fixed time intervals, while the UWB radar simultane-
ously emitted and recorded penetrating signals to detect subsurface area. All data streams,
including images, positioning information, and radar returns, were temporally synchro-
nized using standardized timestamps, enabling correlated multi-sensor analysis during
post-processing and ensuring accurate spatiotemporal registration of all detected defects
within the digital twin representation.
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Figure 9. Building exterior inspection using the wall-climbing robot.

4.1.2. Hardware Settings

The hardware configuration of the proposed framework comprises three integrated
components: the wall-climbing robot, the multi-modal sensor suite, and the ground sta-
tion device. The mechanical specifications of the wall-climbing robot are detailed in Table
2. The RGB camera was mounted through an extended rod, maintaining a fixed perpen-
dicular distance of 60 cm from the wall surface to optimize the field of view for vertical
surface inspection. This specific mounting configuration ensures optimal focus range
while minimizing perspective distortion across the inspection surface. Prior to deploy-
ment, the camera’s intrinsic parameters (including focal length, principal point coordi-
nates, and lens distortion coefficients) were precisely calibrated in laboratory conditions
using the OpenCV 4.12.0 calibration toolbox [44] with a standardized calibration chess-
board (Figure 10). The technical specifications of the camera are shown in Table 3. This
sensor combination enables complementary data acquisition spanning surface visual
characteristics and subsurface structural integrity.

Table 2. Specifications of wall-climbing robot.

Weight (kg) Max. Payload (kg) Size (m) Max. Speed  Max. Power

(m/s) (kW)
11.0 5.0 0.85 x 0.75 x 0.20 0.2 2.0
Table 3. Specifications of the RGB-IR camera.
Lens Resolution View Angle Frame Rate Distance to Wall (m)
RGB 2560 x 1440 73.3° x 41.2° 10 0.6
IR 640 x 512 58.9° x 48.6° 10 0.6

The ground station of the system is selected as a lightweight laptop running Win-
dows 11, equipped with an i7-11800H CPU (2.3 G Hz) and an RTX 3060 GPU (6 GB VRAM).
This ground station serves dual purposes: firstly, it executes real-time deep learning in-
ferences for immediate defect detection and segmentation; secondly, it manages the tem-
poral synchronization and secure data transmission between the robotic platform and the
cloud-based digital twin platform. This hardware configuration ensures sufficient com-
putational throughput for both immediate processing requirements and seamless integra-
tion with the broader inspection ecosystem.
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(b)
Figure 10. The RGB-IR camera (a) and the calibration board (b) (12 x 9, square size = 0.03 m).

4.1.3. Model Training

We constructed a comprehensive wall defect dataset through multiple sources to en-
sure diversity. The dataset incorporates publicly available datasets such as crack-seg [45],
HRCDS [46], S2DS [47], and CRSPEE [48], supplemented with images collected from real-
world building inspection projects. To address domain gaps and enhance dataset robust-
ness, we conducted an extensive augmentation pipeline, combining traditional augmen-
tation techniques (e.g., geometric transformations and color space adjustments) with mod-
ern generative data synthesis using Stable Diffusion. All collected and generated images
were annotated using Labelme 5.2.1 [49]. The proposed dataset is publicly available at [41].

The final dataset comprises 16,000 annotated images with ground truth segmentation
masks categorizing two critical damage types: cracks and spalling. The dataset was parti-
tioned into training (80%), validation (10%), and testing (10%) subsets to facilitate rigorous
model development and unbiased evaluation.

For the detection architecture, we selected YOLO12s as our baseline model, leverag-
ing its optimal balance between computational efficiency and detection accuracy for real-
time applications. This choice specifically addresses the practical constraint of deploy-
ment on resource-constrained devices at construction sites. The model was initialized with
pre-trained weights to benefit from transfer learning. Augmentation strategies, including
linear transformations, mosaic composition, and color space adjustments, were imple-
mented with the specifications provided in Table 4. These techniques significantly im-
prove model robustness to lighting variations, scale changes, and occlusion scenarios
commonly encountered in real inspection environments.

All training experiments were conducted on a workstation running Ubuntu 22.04,
equipped with an RTX 4080 GPU (16 GB VRAM). The complete hyperparameter configu-
ration is detailed in Table 5. This hardware setup ensured efficient batch processing and
rapid iteration during the model development cycle while accommodating the computa-
tional demands of the augmented dataset.

Table 4. Hyperparameters for data augmentation.

. . Flipping ] .
Translation Scaling (Left-Right) Mosaic Erasing HSV
0.1 0.5 0.3 1.0 0.4 0.01,0.7,0.4

Table 5. Hyperparameters for model training.

Max Epoch Batch Size Image Size Dropout Initial/Final Learning Rate Weight Decay Momentum Optimizer

150

24

640 0.15 0.0001; 0.01 0.07 0.937 AdamW
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4.2. Result Demonstration
4.2.1. Defect Segmentation
(1) Evaluation metrics

The performance of the defect segmentation model was evaluated using standard
computer vision metrics. The evaluation is based on classifying predictions against
ground truth labels into four categories: True Positives (TPs), False Positives (FPs), False
Negatives (FNs), and True Negatives (TNs). The criterion for classifying a prediction as a
TP is based on Intersection over Union (IoU) (Equation (5)), which quantifies the overlap
between a predicted segmentation mask and its corresponding ground truth.

The core evaluation metric, mean Average Precision (mAP), is derived by computing
the average precision (Equation (6)) for each class individually, then taking the mean
across all classes. The mAP is calculated at IoU thresholds of 0.5 (mAP@0.5) and 0.75
(mAP@0.75), providing insights into performance under varying strictness criteria. To
provide a counterbalancing measure, recall (Equation (7)) is calculated to evaluate the
model’s completeness in identifying all actual defects. The harmonic mean of precision
and recall, known as the F1-Score (Equation (8)), offers a balanced metric for overall de-
tection performance. Additionally, the mean IoU is reported to capture the model’s pixel-
level segmentation accuracy across all categories.

Area of Overlap
IoU =———— 5
° Area of Union ©®)

TP

N LA 6

Precision TP ¥ FP (6)
TP

— - 7

Recall TPTFN (7)

F1§ _ Precisio * Recall ®)
-eore = Precision + Recall

The performance of the proposed defect segmentation model is summarized in Table
6. At an IoU threshold of 0.5, the model achieved 0.823 mAP for bounding box detection
and 0.775 mAP for instance mask segmentation across all defect types. At the strict loU
threshold of 0.75, the model achieved 0.708 mAP and 0.398 mAP for bounding box detec-
tion and mask segmentation, respectively. This notable difference reflects the challenge of
achieving high pixel-alignment accuracy, particularly for irregular and fine-structured de-

fects such as alligator cracks (Figure 11).
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Figure 11. Challenging cases (a) and (b): alligator cracks segmented as several cracks.
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The F1-score, which balances precision and recall, reached 0.807 for bounding box
detection and 0.756 for mask segmentation, indicating a robust trade-off between false
positives and false negatives in defect identification. The mean IoU of 0.610 for mask seg-
mentation further quantifies the overall pixel-level alignment between predictions and
ground truth, suggesting satisfactory segmentation consistency.

A class-wise breakdown of results is provided in Table 7. Spalling defects were con-
sistently detected and segmented with higher accuracy than cracks. For instance, at IoU =
0.5, spalling attained a precision of 0.837 and an F1-score of 0.803, compared to 0.713 and
0.708 for cracks. This performance gap comes from the inherent complexity of crack mor-
phology: cracks often exhibit thin, discontinuous, and irregular shapes that are difficult to
segment precisely, and their visibility is highly sensitive to image resolution and contrast.
In contrast, spalling regions generally present more defined boundaries and homogene-
ous textures, making them more amenable to both detection and pixel-wise segmentation.

Table 6. Evaluation metrics of the defect segmentation model.

Task mAP@0.5 mAP@0.75 F1-Score Mean IoU
Box prediction 0.823 0.708 0.807 -
Mask prediction 0.775 0.398 0.757 0.610

Table 7. Class-wise distribution of the defect segmentation model.

Class AP@0.5 AP@0.75 F1-Score Mean IoU
Crack 0.713 0.356 0.709 0.548
Spalling 0.837 0.440 0.804 0.671

(2) Comparative study with benchmarks

For comparative benchmarking, we implemented a classical instance segmentation
architecture, Mask R-CNN [21], trained and evaluated on the same dataset. Additionally,
we assessed the zero-shot capability of large transformer-based models such as
Grounded-SAM [50], which is a combination of the object detection model Grounding-
DINO and the semantic segmentation model SAM2. This is to compare the performance
of traditional lightweight architectures against large vision models.

The proposed model and benchmark models were evaluated on three hardware con-
figurations: a high-performance workstation, a laptop with GPU acceleration, and a lap-
top running on CPU only. This setup reflects a realistic inspection scenario, where model
inference is performed on a ground station laptop, since the wall-climbing robot’s
onboard microcontroller (STM32) is dedicated solely to motion control.

As summarized in Table 8, the proposed model outperformed Mask R-CNN in both
precision and speed, achieving higher mAP for both bounding box (0.823) and mask seg-
mentation (0.775). While Grounded-SAM attained a slightly higher mask precision (0.794),
it incurred significantly greater computational latency and was not applicable for laptop
deployment under real-time constraints. Consequently, the proposed model offers an op-
timal balance between accuracy and efficiency, making it well-suited for real-time, re-
source-limited applications such as on-site robotic inspection.
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Table 8. Comparison with benchmarks.

Box Precision Mask Precision Time-Workstation Time-Laptop (RTX Time-Laptop (i7-

Model
ode (mAP@0.5) (mAP@0.5) (RTX 4080) (ms) 3060) (ms) 11800H) (ms)
Grounded-SAM - 0.794 373.6 - -
Mask R-CNN ; 0.701 18.2 155.1 1349.7
Proposed 0.823 0.775 10.5 97.4 127.7

(YOLO12s-Seg)

(3) Ablation study about synthetic data

To evaluate the impact of synthetic data on model performance, an ablation study
was conducted to compare training outcomes with and without generative Al-augmented
images. The study trained two model variants: one using only the original and tradition-
ally augmented dataset, and another enhanced with synthetic defect imagery generated
by Stable Diffusion. As summarized in Table 9, the inclusion of synthetic data resulted in
a significant improvement in key accuracy metrics, including precision, F1-score, and
mean JoU. The enhanced model also demonstrated better generalization ability to unfa-
miliar test scenarios (Figure 12), indicating that synthetic data effectively mitigates class
imbalance and expands feature diversity, thereby strengthening the robustness and relia-
bility of the defect segmentation system.

(a) FP prediction (crack) at the edge of TP
(spalling)

(b) FP removed, TP confidence increased

Figure 12. Challenging case: spalling areas exposing insulation layers, which are not present in train-

ing set. Before (a) and after (b) training with synthetic data.

Table 9. The performance with/without synthetic data.

Data Set Crack AP@0.5 Spalling AP@0.5 F1-Score = Mean IoU
W/o synthetic data 0.552 0.756 0.693 0.534
W/synthetic data 0.713 0.837 0.756 0.610

4.2.2. Size Quantification and Localization

The performance of defect size quantification was evaluated through controlled la-
boratory experiments. This evaluation aimed to validate the accuracy and reliability of
converting pixel-based segmentation results into precise, real-world dimensional meas-
urements. A set of wall specimens with known, pre-measured crack and spalling defects
was imaged under controlled lighting conditions. These images were processed through
the complete inspection pipeline: first, the trained segmentation model isolated each de-
fect, and then the quantification algorithms (e.g., skeletonization for cracks, PCA for spall-
ing) calculated their key parameters.

To establish a clear and consistent benchmark, the evaluation focused on the center
position and the maximum horizontal and vertical spans of each defect. These values are
directly derivable from bounding box parameters and can be rigorously verified in site.
The algorithm results were compared against ground truth measurements in terms of
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Frequency

50

30

mean absolute error (MAE) and mean absolute percentage error (MPAE) (Equations (9)
and (10)), which reflects the average difference between predicted and actual evaluation
targets (length, width, or center) in metric units.

n
1
MAE = ; ' Z|Lpred - Ltruth| (9)
i=1
L L
MPAE =~ Z | pred — truthl (10)
Ltruth

During laboratory testing, a total of 119 defect instances were successfully detected
and segmented. These results are summarized in Table 10. The proposed quantification
method achieved MAEs of 1.140 cm, 0.417 cm, and 0.826 cm in length, width, and center,
respectively. The corresponding MPAEs were 5.56%, 13.86%, and 4.92%, indicating that
dimensional measurement errors generally fell around 10%. The standard deviation val-
ues reflect moderate variability in measurement consistency, which is influenced by fac-
tors such as defect irregularity and image resolution.

The error distribution (illustrated in Figure 13) shows that the majority of dimen-
sional estimates are concentrated near zero error, with sparse instances exhibiting large
deviations. This pattern suggests that while most defects are measured with high preci-
sion, certain challenging cases (e.g., highly irregular crack branching, faint spalling
boundaries) contribute to broader error dispersion. These results demonstrate the mod-
ule’s effectiveness in translating pixel-based visual data into metrically accurate, structur-
ally meaningful measurements suitable for engineering assessment.
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Figure 13. Error distribution histograms.

Table 10. Accuracy of defect size quantification.

Metric MAE (cm) STD (cm) MPAE (%) STD (%)

Length 1.140 3.135 5.56 13.36

Width 0.417 1.038 13.86 31.93
Box Center 0.826 1.901 492 9.92

4.2.3. Project Management Platform

The project management platform was validated in a building inspection project. The
platform was initialized with all relevant project metadata based on user configuration
inputs, including time, location, deployed equipment, and participating personnel. As the
wall-climbing robot started an inspection task, multi-sensor data were transmitted in real
time to the ground station via a wireless local area network (WLAN). The image data
stream was processed through the defect segmentation and quantification pipeline. The
results were then fused with the robot’s positioning data using synchronized timestamps,
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enabling accurate registration of each defect within a global coordinate system. The pro-
cessed data is then mapped onto a high-fidelity digital twin model, creating a comprehen-
sive and interactive representation of the building’s facade condition.

The real-time performance of the proposed platform on the ground station laptop is
summarized in Table 11. The complete inspection workflow, from startup to feedback,
demonstrates smooth and efficient on-site operations. After an initial model loading (max.
4.5 s), the system executes its core operational loop, involving motion commanding (0.1
s), image collection and transmission (2.0 s), position synchronization (0.5 s), and image
analysis (0.2 s). Subsequently, data preview adds 1.0-2.0 s, depending on the user input.
Under typical conditions, the system takes an average response time of approximately
2.8-4.8 s for a full cycle. The precise temporal alignment between image frames and local-
ization data guarantees reliable traceability back to the moment of collection. These fea-
tures confirm the platform’s capability to support real-time robotic inspection and deci-
sion-making in field environments.

Table 11. Time performance of the platform (on the ground station laptop).

Phase Process Avg. Response Time (s)

Preparation Model loading (3 MB-450 MB) 2.5-45
Motion commanding 0.1
. Image collection & transmission 2.0

Operation . o

Position synchronization 0.5
Image analysis 0.2

Feedback Data preview (5 MB-400 MB) 1.0-2.0

The digital twin interface is presented in Figure 14. The left-hand side provides op-
erational context through three dashboards: (1) the Project Overview which details iden-
tifiers such as project name, site location, and description; (2) the Environment Condition
which shows real-time parameters (e.g., temperature, humidity) recorded during inspec-
tion; (3) the Equipment Status which shows live counts and operational states of all de-
ployed sensors, linked to the Equipment module of the platform.

i i B 82 T 984S 46 B0 O 3 HE

L

Defect
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« Statistics, plots
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warning
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Figure 14. Digital twin of a target building for 3D visualization.

The right-hand side presents the inspection outcomes and analytical insights. It in-
cludes: (1) the Defect Summary with interactive charts for multi-dimensional visualization
of defect types, quantities, and spatial distributions; (2) the Safety Warning that highlights
locations on the 3D model where defect metrics (e.g., crack width, spalling area) exceed
predefined safety thresholds, accompanied by maintenance recommendations for proac-
tive risk management. Further, an inspection summary can be automatically generated
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based on large language models (DeepSeek-R1 [51]) and a knowledge base of industry
standards in building inspection.

The proposed digital twin platform advances conventional inspection data manage-
ment in three aspects. (1) First, it significantly improves inspection efficiency: while tradi-
tional building assessments could take several days with daily updated visualizations [52],
the current climbing robot covers facades of a building within a few hours and supports
real-time data analysis with near-instant online visualization for remote users, effectively
shortening the project timeline. (2) Second, it enhances defect traceability quantitatively,
moving from vague positional descriptions or grid-based references (e.g., cracks at B2 re-
gion) to precise coordinate-based localization, enabling consistent tracking and compari-
son across multiple inspections for true digital twin facility management. (3) Third, the
platform transforms maintenance decision-making by replacing qualitative judgments
with quantifiable, standards-based metrics, allowing for objective, threshold-driven pri-
oritization of repair and renovation actions.

5. Conclusions

This paper presented an end-to-end framework for automated facade inspection, in-
cluding a wall-climbing robot, deep-learning defect analysis, and a digital twin platform.
The wall-climbing robot, utilizing negative pressure adhesion, demonstrated reliable nav-
igation on vertical surfaces while carrying a suite of sensors, including an RGB camera
and penetrating sensors. A customized lightweight model was trained for real-time, in-
stance segmentation of cracking and spalling defects at a precision of 0.775 mAP, followed
by metric quantification with an average length error at 1.140 cm and center position error
at 0.826 cm. The RTK-based positioning module enabled precise robot localization, facili-
tating accurate mapping within a building coordinate system. Furthermore, a cloud-based
digital twin platform was developed to visualize inspection results, manage facility data,
and support proactive maintenance through quantitative defect assessment and spatial
localization. The proposed framework has been validated through multiple building in-
spection projects. It significantly improves upon traditional workflows by enhancing op-
erational safety, inspection efficiency, data traceability, and decision-making support.

Though promising results have been demonstrated, this study still has some limita-
tions. First, the robot’s adhesion mechanism may not be applicable to highly rough sur-
faces, limiting its applicability. Second, the current study focused on surface-level defects,
without a detailed investigation of subsurface conditions such as delamination or internal
voids.

Therefore, future works will focus on two directions: (1) enhancing the robot’s hard-
ware for improved adaptability to complex wall geometries and surface textures; (2) ana-
lyzing data from UWB radar and infrared sensors to enable non-destructive subsurface
characterization. These multi-modal data streams will also be used for cross-validation to
improve the robustness and accuracy of defect assessment across both visible and hidden
structural flaws.
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