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Abstract 

The rapid deterioration of building facades presents substantial safety hazards in urban 

environments, necessitating advanced, automated inspection solutions. While computer 

vision (CV) and deep learning (DL) techniques have shown promise for defect analysis, 

critical gaps remain in achieving real-time, quantitative, and generalizable damage assess-

ment suitable for robotic deployment. Current methods often lack precise metric quanti-

fication, struggle with diverse material appearances, and are computationally intensive 

for on-site processing. To address these limitations, this paper introduces a fully auto-

mated, end-to-end inspection framework integrating a wall-climbing robot, a real-time 

vision-based analysis system, and a digital twin management platform. The primary con-

tributions are threefold: (1) a novel, fully integrated robotic framework for autonomous 

navigation, multi-sensor data collection, and real-time analysis; (2) a lightweight, syn-

thetic data-augmented DL model for real-time defect segmentation and metric quantifica-

tion, achieving a mean Average Precision (mAP) of 0.775 for segmentation, an average 

defect length error of 1.140 cm, and an average center position error of 0.826 cm; (3) a 

cloud-based digital twin platform enabling quantitative defect visualization, spatiotem-

poral traceability, and data-driven project management, with the on-site inspection cycle 

demonstrating a responsive latency of 2.8–4.8 s. Validated through laboratory tests and 

real building projects, the framework demonstrates significant improvements in inspec-

tion efficiency, quantitative accuracy, and decision support over conventional methods. 

Keywords: wall-climbing robot; facade inspection; defect segmentation; digital twin;  

project management  

 

1. Introduction 

Regular and effective inspection of building facades is a significant procedure in 

building health monitoring. Traditional wall inspection techniques rely mostly on work-

ing at heights. Construction workers are suspended from the roof and wall elements are 

inspected using human eyes or handheld equipment. In recent years, the Architectural, 

Engineering, Construction, and Facility Management (AEC/FM) industry has seen a 

growing trend of automation with robotics. Various robot vehicles have been investigated 

for monitoring and inspection tasks in as-built facilities, such as Unmanned Aerial 
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Vehicles (UAVs) [1–3], wheeled robots [4,5], quadruped robots [6,7], etc. They are usually 

equipped with cameras or laser scanners to collect images [8,9] or point cloud data [10,11] 

for post-processing. 

UAVs are widely utilized in building facade inspection. However, they are not ap-

plicable under weak Global Navigation Satellite System (GNSS) signals (e.g., close high-

rise buildings) or in no-fly zones (e.g., around airports or military zones). In addition, 

UAVs are not suitable for carrying contact-based sensors as they need to maintain a safe 

distance from walls. Suspended platforms are alternative solutions that can carry human 

workers or automation equipment such as robot arms [12]. However, suspended plat-

forms require pre-installation of heavy block-and-tackle systems, and they are not flexible 

in horizontal movement. As a result, a wall-climbing robot, which directly moves on ver-

tical surfaces in any desired orientation and enables inspection sensors with multiple mo-

dalities, is proposed as the robot platform for automated wall inspection. 

The purpose of wall inspection is to recognize, measure, and locate defects of exterior 

walls, including cracks, spalling, etc. Traditional inspection techniques rely on human 

workers for decision making, which is subjective and inefficient. In recent years, the de-

velopment of deep learning models such as Convolutional Neural Network (CNN) [13] 

has made it possible to automatically detect and segment wall defects from images. In 

addition, computer vision algorithms such as Structure-from-Motion (SfM) can accurately 

determine the camera’s motion and locate defect features. However, current defect detec-

tion techniques suffer from limitations in both spatial and temporal accuracy. Spatially, 

conventional techniques fail to provide precise quantitative data, such as the exact size, 

location, and shape description of defects. They also lack the generalization ability to di-

verse surface materials. Temporally, the inspection results of a building are not updated 

regularly to reflect subsequent maintenance or renovations in a timely manner. To address 

these shortcomings, a customized defect segmentation technique and an intelligent pro-

ject management system are required. The proposed solution can accurately analyze the 

data collected by a wall-climbing robot in real time and verify an up-to-date digital twin 

model of the building. 

To address these challenges, this study introduces an automated inspection frame-

work for building exterior walls. As illustrated in Figure 1, the proposed framework com-

prises three key components: (1) a wall-climbing robot employing negative pressure ad-

hesion technology, equipped with visual and penetrating sensors; (2) a ground station 

that facilitates multi-sensor data processing through deep learning-based defect detection 

algorithms and quantitative analysis; and (3) a cloud platform that leverages digital twin 

representations to enable quantitative defect condition assessment and inspection project 

management. 

 

Figure 1. Illustration of the proposed framework. 

The major contributions of this study are summarized as follows: 
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(1) A fully automated, end-to-end facade inspection framework that integrates climbing-

robot navigation, multimodal data collection, real-time analysis, and as-is model up-

dating. 

(2) A lightweight deep learning model for real-time defect segmentation and metric 

quantification, supported by a novel, generative-augmented open dataset designed 

for wall defect detection. 

(3) A digital twin-based project management platform that unifies data integration, vis-

ualization, and user interaction, significantly improving inspection efficiency, trace-

ability, and decision support over traditional methods. 

The remainder of the paper is organized as follows: Section 2 gives a comprehensive 

literature review; Section 3 describes the proposed methodology; Section 4 demonstrates 

the experiment validation; finally, Section 5 gives the conclusion, limitations, and future 

works. 

2. Literature Review 

This section provides a literature review on different inspection vehicles, detection 

algorithms, and digital twin techniques, as presented in Sections 2.1–2.3, respectively. 

2.1. Wall Inspection Vehicles 

There have been growing attempts in the AEC/FM industry to conduct exterior wall 

inspection using automated vehicles. UAV is a popular choice in inspection of high-rise 

buildings, bridges, and various infrastructure. For example, Bolourian et al. [14] proposed 

a UAV path planning framework for aerial laser scanning and bridge inspection. Tan et 

al. [15] proposed a UAV-based framework to collect images of building surfaces. Their 

work was further extended to achieve mapping and modeling of defect data [16]. How-

ever, the presence of no-fly zones and payload restrictions are two major disadvantage of 

UAVs. Therefore, some researchers focused on wall-climbing robots as an alternative so-

lution, due to their flexibility, durability, and payload capacity. 

Wall-climbing robots are typically categorized into four types based on their adhe-

sion mechanisms [17]: magnetic, negative pressure, electrostatic, and bio-inspired adhe-

sion. Negative pressure adhesion is the preferred method for wall inspection robots, as it 

offers high payload capacity and is effective on a wide range of common building surface 

materials [18]. The core principle of negative pressure adhesion involves generating a 

pressure difference between the sealed chambers under the robot and the external envi-

ronment. This creates a suction force that enables the robot to remain firmly attached while 

moving. 

Recent research has demonstrated the effectiveness of wall-climbing robots in build-

ing inspection applications. For example, Yang et al. [19] proposed a wall-climbing robot 

for concrete inspection and utilized an RGB-D camera for 3D point cloud reconstruction. 

Hu et al. [20] proposed a coverage-oriented path planning technique for wall-climbing 

robots to improve the efficiency of inspection tasks. However, these methods did not re-

alize quantitative analysis of defect types, shapes, and locations. This study aims to de-

velop an integrated robotic platform capable of precise localization, autonomous naviga-

tion on vertical surfaces, and automated wall defect inspection. 

2.2. Defect Detection Algorithms 

Developments in deep learning and computer vision have pioneered automated de-

fect detection using image data. CNN-based models were first investigated for classifica-

tion, bounding box detection, and pixel-level segmentation tasks. For example, He et al. 

proposed Mask R-CNN [21], which improved over bounding box detection models [22] 
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by adding a segmentation head and became a benchmark for instance segmentation tasks. 

Redmon et al. proposed YOLO (You Only Look Once) [23], which innovatively combined 

the region proposal and classification steps into one network structure. It significantly im-

proved inference speed and became the dominant model for real-time object detection. 

These CNN-based models have been verified in crack detection tasks for buildings [24] 

and infrastructure [25]. 

Since the introduction of Transformer [26], models based on a self-attention structure 

have become popular in deep learning. Transformer-based models such as Vision Trans-

former (ViT) [27], RT-DETR [28], and Grounding-DINO [29] were soon introduced into 

visual tasks and achieved impressive accuracy and generalization ability. Chu et al. [30] 

proposed a Transformer-based model to improve the accuracy of crack segmentation for 

bridges. Zim et al. [31] proposed to combine CNN and Transformer into one hybrid model 

and applied it for crack segmentation tasks. Although these studies demonstrated im-

proved performance, Transformer architecture usually requires extensive training da-

tasets and substantially greater computational resources for both training and inference 

compared to convolutional models. This is not favored for on-site applications, where the 

best available computational device could be a laptop. Therefore, this study proposes to 

train lightweight models such as YOLO on domain-specific datasets, aiming to achieve 

sufficient accuracy and real-time processing on low computational resources. 

2.3. Digital Twin Applications 

Digital twin technology transforms traditional facility management by creating a dy-

namic, virtual replica of a physical asset. It shifts management from a reactive, experience-

based approach to a proactive, data-driven system. Foundational construction represen-

tations like Building Information Modeling (BIM) and Geographic Information Systems 

(GIS) [32] often serve as the geometric and semantic backbone for these digital twins. The 

application of this technology spans several domains. In robotics, for instance, Chen et al. 

[33,34] incorporated physics engines to simulate and optimize coverage path planning for 

wheeled inspection robots, improving both accuracy and efficiency. Wang et al. [35,36] 

proposed a hardware-in-the-loop simulation environment for mobile laser scanning using 

Unreal Engine. Another significant area of development is human–machine interaction. 

Liu et al. [37] combined UAV-captured images with augmented reality to conduct build-

ing inspection. Alizadehsalehi et al. [38] proposed a progress monitoring framework 

adopting digital twin and extended reality. For example, Tan et al. [39] introduced a 

mixed-reality platform that enhances user engagement through intuitive interactive op-

erations. 

However, many existing systems exhibit limited interoperability with robotic opera-

tional data, including positional coordinates, control commands, and raw sensor streams. 

To address this gap, this study proposes a digital twin-based system for wall inspection 

and structural health monitoring. The framework enables not only qualitative assessment 

but also delivers quantitative metrics, such as defect dimensions and precise location data 

within a fixed coordinate system. 

3. Methodology 

This section describes the proposed methodology in four parts: hardware and soft-

ware systems, image-based inspection, and project management. They are detailed in Sec-

tions 3.1–3.3, respectively. 
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3.1. System Architecture 

The wall-climbing robot in this study utilizes negative pressure adhesion for surface 

attachment. Its locomotion system consists of two impellers that generate vacuum pres-

sure and four wheels enabling lateral movement (Figure 2). The platform houses an Ultra-

wideband (UWB) radar on one side and features a mounting base supporting an extended 

rod with a camera sensor. The robot is directly powered with cables to ensure long dura-

bility. The sub-modules of the robot system are described as follows: 

(1) Sensing subsystem 

The robotic platform is equipped with a multi-modal sensor set combining contact 

and non-contact technologies for comprehensive building inspection. An RGB and infra-

red (IR) camera simultaneously captures both visible light and infrared radiation, ena-

bling concurrent detection of surface defects such as cracks and spalling through visual 

analysis, and subsurface defects such as hollowing through thermal variations. The UWB 

radar complements this by penetrating building materials to reveal hidden voids and de-

lamination within deeper construction layers. This strategic sensor fusion provides cross-

validation capabilities across different physical modalities, significantly enhancing in-

spection reliability and defect characterization accuracy. The current study focuses specif-

ically on RGB image data acquisition and processing pipeline development. 

(2) Localization subsystem 

Accurate localization is a fundamental prerequisite for path planning and scene re-

construction, as a robot must precisely determine its position to execute navigation com-

mands effectively. For wall-climbing robots operating in outdoor environments, GNSS 

positioning (e.g., Global Positioning System (GPS), BeiDou, etc.) provides a viable locali-

zation framework. However, typical GNSS solutions offer only meter-level accuracy, 

which is insufficient for detailed inspection tasks on building exteriors. Therefore, this 

study employs Real-Time Kinematic (RTK) technology to enhance GNSS positioning pre-

cision. The RTK method establishes a fixed base station at a known, precisely surveyed 

location (i.e., a geodetic marker). This base station calculates real-time error corrections 

for satellite signals and broadcasts them to the robot’s GNSS receiver, enabling centime-

ter-level positional accuracy in real-time. Furthermore, a coordinate calibration was per-

formed prior to each inspection task to transform the global geodetic coordinates (longi-

tude, latitude, altitude) into a local building reference frame (x-y-z, as illustrated in Figure 

3), with its origin defined at the bottom-left corner of the target wall. 

To complement the positional data and determine the robot’s orientation, an Inertial 

Measurement Unit (IMU) was installed at the robot’s center. By measuring the direction 

of gravity, the IMU provides the robot’s body orientation. This information, combined 

with the RTK position, allows for the precise derivation of the onboard camera’s location 

at each timestamp relative to the robot’s center. This integrated sensor calibration ensures 

that every image captured during inspection can be accurately geotagged within the 

building’s coordinate system. 

(3) Planning subsystem 

The robot’s inspection path was generated using a coverage-oriented planning tech-

nique, modified from our previous work [34]. This approach involved segmenting the 

vertical wall surface into candidate regions and performing a global optimization to guar-

antee complete coverage while minimizing the total path length, resulting in a zig-zag 

trajectory. The path planning module also incorporates an emergency stop mechanism, 

which is triggered upon encountering non-traversable regions (e.g., windows) to ensure 

operational safety. 

  



Buildings 2026, 16, x FOR PEER REVIEW 6 of 23 
 

https://doi.org/10.3390/xxxxx 

(4) Ground station 

The ground station, operating on a gaming laptop with a graphics card, handles data 

visualization, deep-learning inference, and human–machine interaction. Inspection tech-

nicians can either teleoperate the robot to inspect specific areas or activate autonomous 

mode to execute coverage path planning, collecting multi-source data at predetermined 

intervals. Concurrently, a specially trained image segmentation model processes visual 

data in real-time to identify wall defects. The resulting pixel-level segmentation masks are 

combined with camera parameters to calculate accurate metric dimensions for each defect. 

Through timestamp synchronization, these defects are precisely mapped to wall coordi-

nates using robot localization data and visualized within a digital twin system. 

(5) Cloud platform 

The ground station maintains regular synchronization with a cloud-based facility 

management platform, enabling dynamic updates of inspection results to the digital twin 

model. This integrated platform supports comprehensive project management capabili-

ties, including task allocation, personnel coordination, and equipment monitoring, 

thereby facilitating full digital transformation throughout the building lifecycle manage-

ment process. 

 

Figure 2. The proposed wall-climbing robot with onboard sensors. 

 

Figure 3. Localization and path planning modules. 
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3.2. Image-Based Defect Inspection 

This section describes a three-step inspection process: defect extraction from images 

(Section 3.2.1), defect size quantification (Section 3.2.2), and localization on walls (Section 

3.2.3). 

3.2.1. Deep-Learning Defect Segmentation 

This study employs visual inspection, as imagery most closely aligns with human 

perception. In addition, camera sensors offer a compact, cost-effective, and practical solu-

tion for integration into wall-climbing robots. Recent advances in visual deep learning 

have shown substantial advances in classification, detection, and segmentation tasks. Spe-

cifically, the wall inspection task is formulated as an instance segmentation problem, re-

quiring the model to predict a class label, a bounding box, and a pixel-wise mask for each 

defect present in an image. 

In this study, two types of critical wall defects are considered: cracks and spalling. 

Cracks usually arise from material shrinkage, uneven structural settlement, or repeated 

thermal-humidity cycles. They may create pathways for water infiltration, accelerate ma-

terial degradation, and undermine the wall’s waterproofing capacity. Structurally, un-

addressed cracks can propagate under stress, reducing the wall’s load-bearing efficiency 

and compromising overall structural stability. Spalling, on the other hand, involves the 

detachment of surface layers (e.g., plaster, concrete cover) from the substrate, typically 

caused by bond failure between layers, water expansion in pores, or corrosion-induced 

expansion of embedded steel. For facades, spalling causes direct surface damage and ex-

poses the underlying structure to environmental aggressors (e.g., moisture, pollutants). 

Structurally, it weakens the protective layer of load-bearing components, accelerates rein-

forcement corrosion, and induces progressive structural deterioration, posing long-term 

safety risks to the building [40]. 

However, the existing datasets for defect segmentation are not well suited for climb-

ing-robot inspection due to several critical gaps: (1) they lack tight-shot, close-range wall 

images that match the constrained field of view of an onboard robotic camera; (2) they 

exhibit a highly unbalanced class distribution, with cracks much more frequently found 

than spalling instances; (3) their limited material diversity hinders model generalization 

(e.g., spalling in public datasets often exposes concrete aggregates, whereas real-world 

facade spalling may reveal underlying insulation or other materials.) 

To address these limitations, this study constructs a tailored dataset [41] by merging 

multiple public benchmarks with self-collected images captured via handheld devices 

and drones. Further, emphasis is placed on balancing class representation and enhancing 

the diversity of spalling defects. The dataset is further augmented using geometric trans-

formations and generative models such as Stable Diffusion to improve robustness and 

generalization [42]. 

This study employed typical instance segmentation models to automatically detect, 

classify, and segment crack and spalling defects from monocular images. Given the con-

strained computational resources typically available in construction environments, our 

implementation prioritizes lightweight architectures capable of real-time inference on 

portable devices. The YOLO series, recognized as the industry standard for real-time ob-

ject detection, was selected for its exceptional computational efficiency. Unlike conven-

tional two-stage detectors that perform region proposal and classification sequentially, 

YOLO utilizes a unified neural network that simultaneously predicts bounding boxes and 

class probabilities in a single forward pass. Specifically, we adopted YOLO12 as our base 

architecture due to its innovative attention-centric design that replaces standard convolu-

tional layers with more efficient gated attention mechanisms. This architectural advance-

ment achieves state-of-the-art detection and segmentation accuracy while maintaining 
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computational efficiency comparable to previous versions such as YOLO11. The detailed 

dataset information and training strategies are examined in the Validation section. 

3.2.2. Real-World Metric Quantification 

(1) Size quantification 

Following defect segmentation, the subsequent task is to determine the precise di-

mensions and spatial position of each defect instance. Our methodology adopts the pin-

hole camera model, which mathematically describes how 3D scenes are projected onto a 

2D image plane through a perspective transformation. However, monocular imagery in-

troduces a fundamental limitation: a single image cannot resolve the metric scale of indi-

vidual pixels without depth information, as different objects occupying the same view 

frustum produce identical 2D projections (Figure 4). This scale ambiguity presents a sig-

nificant challenge for quantitative structural assessment. 

 

Figure 4. Objects with unknown depths appear identical in the camera’s view. 

Fortunately, our inspection scenario incorporates two key constraints that resolve 

this inherent limitation. First, all target defects are essentially two-dimensional features 

co-planar on the wall surface. Second, the robot’s mechanical design maintains a fixed 

perpendicular orientation between the camera axis and the wall plane throughout opera-

tion. This engineered configuration enables us to treat the depth parameter as a known 

constant, i.e., the perpendicular distance from the camera lens to the wall surface. This 

effectively eliminates the need for additional depth sensors. 

As illustrated in Figure 5, this setup establishes a direct geometric relationship where 

each feature point in the 3D camera coordinate system (Xc, Yc, Zc) corresponds to a pixel 

location (ui, vi) on the 2D image plane through projective geometry. Using Equation (1), 

where Zc represents the fixed camera-to-wall distance, λ denotes a scale factor, and fx, fy, 

cx, cy are the pre-calibrated camera intrinsic parameters, we can solve for the actual phys-

ical dimensions Xc and Yc. This approach effectively establishes the metric scale of each 

pixel, enabling accurate quantification of defect sizes and positions in real-world units 

rather than pixel counts, thereby providing structurally meaningful measurements for en-

gineering assessment. 
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Figure 5. Pinhole camera projection from the camera’s coordinate to the image plane. 
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(2) Shape description 

After quantification of pixel dimensions, a targeted geometric approach is applied on 

each defect to extract shape descriptions. This study employs classical machine learning 

algorithms to derive key representative parameters due to their high efficiency. Although 

deep learning algorithms such as autoencoders [43] are capable of non-linear dimension-

ality reduction and automated geometry description, they introduce additional GPU over-

head. Given that the system already supports a computationally intensive instance seg-

mentation model, the use of lightweight classical algorithms provides an effective balance 

between accuracy and processing efficiency. 

For linear, irregular defects such as cracks, it is essential to first define their length 

and width. A skeletonization method is employed, which extracts the morphological skel-

eton from the defect contour. The skeleton is a 1-pixel-wide centerline that preserves the 

topology of the original shape. It can be obtained through an iterative thinning process. 

This process peels away boundary pixels until only the medial axis remains, and connec-

tivity is preserved throughout this operation. The total crack length is determined by sum-

ming the lengths of all connected skeletal segments. For complex, networked patterns like 

alligator cracks, the longest continuous span is used as the representative length. The local 

width at each skeleton point is found by measuring the distance to the contour along the 

normal direction. These local widths are then averaged to represent the overall crack 

width. 

For regional defects such as spalling, the Principal Component Analysis (PCA) algo-

rithm is applied on segmented pixels to determine the major and minor axes from the 2D 

pixel distribution. PCA works by identifying orthogonal directions of maximum variance 

in the data through eigenvector decomposition of the covariance matrix. The first princi-

pal component (the largest eigenvector) represents the length direction as it captures the 

direction along which the spalling pixels exhibit the greatest spatial spread. Then, the or-

thogonal axis (the second eigen vector) defines the width direction. Further, spalling de-

fects are evaluated using their area, calculated as the total count of segmented pixels. The 

metric quantification for crack and spalling defects is illustrated in Figure 6. 

  
(a) (b) 

Figure 6. Size quantification for crack (a) and spalling (b) using skeleton extraction and PCA algo-

rithm, respectively. 

  



Buildings 2026, 16, x FOR PEER REVIEW 10 of 23 
 

https://doi.org/10.3390/xxxxx 

3.2.3. Robot and Defect Localization 

Defect positions are determined through a sequential coordinate transformation pro-

cess that establishes precise spatial relationships across multiple reference frames. Each 

defect’s location, initially identified by the bounding box center in the camera coordinate 

system, undergoes a geometric transformation to ultimately reach the building coordinate 

system. The process begins with the transformation to the robot’s body frame using the 

known geometric configuration of the mounting rod, characterized by translation vector 

Trc and rotation matrix Rrc. This intermediate step aligns defect positions with the robot’s 

structural framework. 

Subsequently, the position is transformed to the global building coordinate system 

using the robot’s pose relative to the wall, defined by transformation parameters Twr and 

Rwr, as illustrated in Figure 7. The camera-to-robot rotation matrix Rrc is derived from the 

known mechanical inclination angle θc, while the translation vector Trc is determined from 

physical design configurations. Similarly, the robot-to-wall rotation Rwr is calculated from 

the inclination angle θr measured by the IMU relative to gravity, and the translation Twr 

is provided by the high-precision RTK positioning system, calibrated to the wall’s bottom-

left corner as the coordinate origin. 

 

Figure 7. Camera-to-wall coordinate transformation. 

Equation (2) demonstrates the comprehensive homogeneous coordinate transfor-

mation from camera coordinates (Xc, Yc, Zc) to wall coordinates (Xw, Yw, Zw). The rotation 

matrices are rigorously derived using the Z-Y-X Euler angle formulation Rot (yaw, pitch, 

roll), with detailed mathematical expressions provided in Equations (3) and (4). This 

multi-stage transformation chain enables precise defect localization within the architec-

tural context, facilitating accurate documentation and subsequent maintenance planning. 
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3.3. Digital Twin Project Management 

The project management platform serves as a dynamically synchronized, interoper-

able data center within the proposed framework. It is designed to support the automated 

analysis of exterior wall defects across complex scenarios such as multiple buildings, di-

verse equipment, and concurrent tasks. A central component of this platform is the up-to-

date digital twin model, which provides immersive 3D visualization and unified data in-

tegration. This model loads high-precision as-designed building models (e.g., from 

SketchUp or Revit) and spatially maps the processed defect inspection results, including 

precise locations and diagnostic information, onto the corresponding facades. This inte-

gration enables users to interactively explore the building’s health status from any view-

point and drill down into specific defects. Detailed diagnosis is supported by quantitative 

evidence, such as the original inspection imagery and algorithmically generated annota-

tions. This cohesive integration of data management and immersive visualization facili-

tates comprehensive assessment and informed maintenance decision-making. 

The proposed platform has a modular architecture consisting of four core compo-

nents (Figure 8): 

1. Building Management: This module maintains a hierarchical structure of building 

assets: from building complexes, individual buildings, to specific wall facades. Users 

can dynamically create and configure relationships between different data objects, 

supporting multi-facade and multi-round inspections. 

2. Equipment Management: This module registers and tracks the status of inspection 

devices, including basic information (e.g., serial numbers) and algorithmic parame-

ters (e.g., camera parameters), to ensure proper allocation and algorithm compatibil-

ity of equipment. 

3. Personnel Management: This module utilizes role-based access control to define user 

permissions and data visibility, enabling secure multi-team, multi-level collaborative 

scenarios. 

4. Task Management: This module is the core component that manages the end-to-end 

inspection workflow from task creation to result presentation. It automatically links 

relevant building attributes and seamlessly integrates raw sensor data, detection re-

sults, and quantitative measurements into a structured data presentation. Based on 

industry standards and historical records, the platform supports informed decision-

making and maintenance scheduling. 

 

Figure 8. Functional modules of the project management platform. 

The platform is built on a client-server architecture that separates the frontend and 

backend components, enhancing both maintainability and scalability. The frontend User 

Interface (UI) is developed with the Vue framework using a layered design, while the 

backend employs a Spring Boot-based microservices architecture to provide secure and 
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robust Application Programming Interface (API) services. Its core technical components 

and their interactions are outlined in in Table 1. This structure ensures a high-performance, 

secure, and modular platform capable of supporting complex, multi-step inspection 

workflows. 

Table 1. Software architecture of the platform. 

Component Layer Implementation Primary Functions 

Frontend UI Vue 3.5 
Provides a fast, intuitive interface for real-time data visualiza-

tion and control. 

Backend API & Core Services 
Spring Boot 2.5 & JWT 

0.9 

Ensures reliable, secure access and smooth operation of all ap-

plication features. 

Data & File Management 
MyBatis 2.2, Redis 6.2, 

MinIO 8.5 

Enables quick search, stable access, and efficient handling of 

large models and reports. 

4. Validation 

This section presents the experiment setups and results in Sections 4.1 and 4.2, re-

spectively. 

4.1. Experiment Setup 

4.1.1. Site Information 

The proposed framework is validated in both laboratory tests and a building facade 

inspection project. The experimental validation was performed in a construction labora-

tory located in Daxing, Beijing, where several prefabricated wall elements with precisely 

introduced crack and spalling defects of varying severity were selected as test specimens. 

To establish reliable ground truth measurements for quantitative performance evaluation, 

the actual dimensions of these artificial defects were manually measured using high-pre-

cision laser range finders. 

The field validation was conducted on a residential building in Tongzhou, Beijing. 

The building exhibits typical facade defects, including minor cracks and spalling. The 

original SketchUp architectural design drawings of the building were obtained prior to 

the experiment. They were converted into a digital twin model to support facility man-

agement operations and provide spatial context for localization. For the experiment, the 

north façade (Figure 9) was selected for robotic inspection due to its uniform exposure to 

environmental factors and accessibility. The wall-climbing robot commenced operations 

from the bottom-left corner of the designated wall area, executing a pre-programmed zig-

zag coverage path that systematically traversed the entire vertical surface. During navi-

gation, onboard sensors collected synchronized multi-modal data streams: the camera 

captured monocular RGB images at fixed time intervals, while the UWB radar simultane-

ously emitted and recorded penetrating signals to detect subsurface area. All data streams, 

including images, positioning information, and radar returns, were temporally synchro-

nized using standardized timestamps, enabling correlated multi-sensor analysis during 

post-processing and ensuring accurate spatiotemporal registration of all detected defects 

within the digital twin representation. 
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Figure 9. Building exterior inspection using the wall-climbing robot. 

4.1.2. Hardware Settings 

The hardware configuration of the proposed framework comprises three integrated 

components: the wall-climbing robot, the multi-modal sensor suite, and the ground sta-

tion device. The mechanical specifications of the wall-climbing robot are detailed in Table 

2. The RGB camera was mounted through an extended rod, maintaining a fixed perpen-

dicular distance of 60 cm from the wall surface to optimize the field of view for vertical 

surface inspection. This specific mounting configuration ensures optimal focus range 

while minimizing perspective distortion across the inspection surface. Prior to deploy-

ment, the camera’s intrinsic parameters (including focal length, principal point coordi-

nates, and lens distortion coefficients) were precisely calibrated in laboratory conditions 

using the OpenCV 4.12.0 calibration toolbox [44] with a standardized calibration chess-

board (Figure 10). The technical specifications of the camera are shown in Table 3. This 

sensor combination enables complementary data acquisition spanning surface visual 

characteristics and subsurface structural integrity. 

Table 2. Specifications of wall-climbing robot. 

Weight (kg) Max. Payload (kg) Size (m) 
Max. Speed 

(m/s) 

Max. Power 

(kW) 

11.0 5.0 0.85 × 0.75 × 0.20 0.2 2.0 

Table 3. Specifications of the RGB-IR camera. 

Lens Resolution View Angle Frame Rate Distance to Wall (m) 

RGB 2560 × 1440 73.3° × 41.2° 10 0.6 

IR 640 × 512 58.9° × 48.6° 10 0.6 

The ground station of the system is selected as a lightweight laptop running Win-

dows 11, equipped with an i7-11800H CPU (2.3 G Hz) and an RTX 3060 GPU (6 GB VRAM). 

This ground station serves dual purposes: firstly, it executes real-time deep learning in-

ferences for immediate defect detection and segmentation; secondly, it manages the tem-

poral synchronization and secure data transmission between the robotic platform and the 

cloud-based digital twin platform. This hardware configuration ensures sufficient com-

putational throughput for both immediate processing requirements and seamless integra-

tion with the broader inspection ecosystem. 
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(a) (b) 

Figure 10. The RGB-IR camera (a) and the calibration board (b) (12 × 9, square size = 0.03 m). 

4.1.3. Model Training 

We constructed a comprehensive wall defect dataset through multiple sources to en-

sure diversity. The dataset incorporates publicly available datasets such as crack-seg [45], 

HRCDS [46], S2DS [47], and CRSPEE [48], supplemented with images collected from real-

world building inspection projects. To address domain gaps and enhance dataset robust-

ness, we conducted an extensive augmentation pipeline, combining traditional augmen-

tation techniques (e.g., geometric transformations and color space adjustments) with mod-

ern generative data synthesis using Stable Diffusion. All collected and generated images 

were annotated using Labelme 5.2.1 [49]. The proposed dataset is publicly available at [41]. 

The final dataset comprises 16,000 annotated images with ground truth segmentation 

masks categorizing two critical damage types: cracks and spalling. The dataset was parti-

tioned into training (80%), validation (10%), and testing (10%) subsets to facilitate rigorous 

model development and unbiased evaluation. 

For the detection architecture, we selected YOLO12s as our baseline model, leverag-

ing its optimal balance between computational efficiency and detection accuracy for real-

time applications. This choice specifically addresses the practical constraint of deploy-

ment on resource-constrained devices at construction sites. The model was initialized with 

pre-trained weights to benefit from transfer learning. Augmentation strategies, including 

linear transformations, mosaic composition, and color space adjustments, were imple-

mented with the specifications provided in Table 4. These techniques significantly im-

prove model robustness to lighting variations, scale changes, and occlusion scenarios 

commonly encountered in real inspection environments. 

All training experiments were conducted on a workstation running Ubuntu 22.04, 

equipped with an RTX 4080 GPU (16 GB VRAM). The complete hyperparameter configu-

ration is detailed in Table 5. This hardware setup ensured efficient batch processing and 

rapid iteration during the model development cycle while accommodating the computa-

tional demands of the augmented dataset. 

Table 4. Hyperparameters for data augmentation. 

Translation Scaling 
Flipping 

(Left-Right) 
Mosaic Erasing HSV 

0.1 0.5 0.3 1.0 0.4 0.01;0.7;0.4 

Table 5. Hyperparameters for model training. 

Max Epoch Batch Size Image Size Dropout Initial/Final Learning Rate Weight Decay Momentum Optimizer 

150 24 640 0.15 0.0001; 0.01 0.07 0.937 AdamW 



Buildings 2026, 16, x FOR PEER REVIEW 15 of 23 
 

https://doi.org/10.3390/xxxxx 

4.2. Result Demonstration 

4.2.1. Defect Segmentation 

(1) Evaluation metrics 

The performance of the defect segmentation model was evaluated using standard 

computer vision metrics. The evaluation is based on classifying predictions against 

ground truth labels into four categories: True Positives (TPs), False Positives (FPs), False 

Negatives (FNs), and True Negatives (TNs). The criterion for classifying a prediction as a 

TP is based on Intersection over Union (IoU) (Equation (5)), which quantifies the overlap 

between a predicted segmentation mask and its corresponding ground truth. 

The core evaluation metric, mean Average Precision (mAP), is derived by computing 

the average precision (Equation (6)) for each class individually, then taking the mean 

across all classes. The mAP is calculated at IoU thresholds of 0.5 (mAP@0.5) and 0.75 

(mAP@0.75), providing insights into performance under varying strictness criteria. To 

provide a counterbalancing measure, recall (Equation (7)) is calculated to evaluate the 

model’s completeness in identifying all actual defects. The harmonic mean of precision 

and recall, known as the F1-Score (Equation (8)), offers a balanced metric for overall de-

tection performance. Additionally, the mean IoU is reported to capture the model’s pixel-

level segmentation accuracy across all categories. 

𝐼𝑜𝑈 =
Area of Overlap

Area of Union
 (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

The performance of the proposed defect segmentation model is summarized in Table 

6. At an IoU threshold of 0.5, the model achieved 0.823 mAP for bounding box detection 

and 0.775 mAP for instance mask segmentation across all defect types. At the strict IoU 

threshold of 0.75, the model achieved 0.708 mAP and 0.398 mAP for bounding box detec-

tion and mask segmentation, respectively. This notable difference reflects the challenge of 

achieving high pixel-alignment accuracy, particularly for irregular and fine-structured de-

fects such as alligator cracks (Figure 11). 

  
(a) (b) 

Figure 11. Challenging cases (a) and (b): alligator cracks segmented as several cracks. 
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The F1-score, which balances precision and recall, reached 0.807 for bounding box 

detection and 0.756 for mask segmentation, indicating a robust trade-off between false 

positives and false negatives in defect identification. The mean IoU of 0.610 for mask seg-

mentation further quantifies the overall pixel-level alignment between predictions and 

ground truth, suggesting satisfactory segmentation consistency. 

A class-wise breakdown of results is provided in Table 7. Spalling defects were con-

sistently detected and segmented with higher accuracy than cracks. For instance, at IoU = 

0.5, spalling attained a precision of 0.837 and an F1-score of 0.803, compared to 0.713 and 

0.708 for cracks. This performance gap comes from the inherent complexity of crack mor-

phology: cracks often exhibit thin, discontinuous, and irregular shapes that are difficult to 

segment precisely, and their visibility is highly sensitive to image resolution and contrast. 

In contrast, spalling regions generally present more defined boundaries and homogene-

ous textures, making them more amenable to both detection and pixel-wise segmentation. 

Table 6. Evaluation metrics of the defect segmentation model. 

Task mAP@0.5 mAP@0.75 F1-Score Mean IoU 

Box prediction 0.823 0.708 0.807 - 

Mask prediction 0.775 0.398 0.757 0.610 

Table 7. Class-wise distribution of the defect segmentation model. 

Class AP@0.5 AP@0.75 F1-Score Mean IoU 

Crack 0.713 0.356 0.709 0.548 

Spalling 0.837 0.440 0.804 0.671 

(2) Comparative study with benchmarks 

For comparative benchmarking, we implemented a classical instance segmentation 

architecture, Mask R-CNN [21], trained and evaluated on the same dataset. Additionally, 

we assessed the zero-shot capability of large transformer-based models such as 

Grounded-SAM [50], which is a combination of the object detection model Grounding-

DINO and the semantic segmentation model SAM2. This is to compare the performance 

of traditional lightweight architectures against large vision models. 

The proposed model and benchmark models were evaluated on three hardware con-

figurations: a high-performance workstation, a laptop with GPU acceleration, and a lap-

top running on CPU only. This setup reflects a realistic inspection scenario, where model 

inference is performed on a ground station laptop, since the wall-climbing robot’s 

onboard microcontroller (STM32) is dedicated solely to motion control. 

As summarized in Table 8, the proposed model outperformed Mask R-CNN in both 

precision and speed, achieving higher mAP for both bounding box (0.823) and mask seg-

mentation (0.775). While Grounded-SAM attained a slightly higher mask precision (0.794), 

it incurred significantly greater computational latency and was not applicable for laptop 

deployment under real-time constraints. Consequently, the proposed model offers an op-

timal balance between accuracy and efficiency, making it well-suited for real-time, re-

source-limited applications such as on-site robotic inspection. 

  



Buildings 2026, 16, x FOR PEER REVIEW 17 of 23 
 

https://doi.org/10.3390/xxxxx 

Table 8. Comparison with benchmarks. 

Model 
Box Precision 

(mAP@0.5) 

Mask Precision 

(mAP@0.5) 

Time-Workstation 

(RTX 4080) (ms) 

Time-Laptop (RTX 

3060) (ms) 

Time-Laptop (i7-

11800H) (ms) 

Grounded-SAM - 0.794 373.6 - - 

Mask R-CNN  - 0.701 18.2 155.1 1349.7 

Proposed 

(YOLO12s-Seg) 
0.823 0.775 10.5 97.4 127.7 

(3) Ablation study about synthetic data 

To evaluate the impact of synthetic data on model performance, an ablation study 

was conducted to compare training outcomes with and without generative AI-augmented 

images. The study trained two model variants: one using only the original and tradition-

ally augmented dataset, and another enhanced with synthetic defect imagery generated 

by Stable Diffusion. As summarized in Table 9, the inclusion of synthetic data resulted in 

a significant improvement in key accuracy metrics, including precision, F1-score, and 

mean IoU. The enhanced model also demonstrated better generalization ability to unfa-

miliar test scenarios (Figure 12), indicating that synthetic data effectively mitigates class 

imbalance and expands feature diversity, thereby strengthening the robustness and relia-

bility of the defect segmentation system. 

  
(a) FP prediction (crack) at the edge of TP 

(spalling) 
(b) FP removed, TP confidence increased 

Figure 12. Challenging case: spalling areas exposing insulation layers, which are not present in train-

ing set. Before (a) and after (b) training with synthetic data. 

Table 9. The performance with/without synthetic data. 

Data Set Crack AP@0.5 Spalling AP@0.5 F1-Score Mean IoU 

W/o synthetic data 0.552 0.756 0.693 0.534 

W/synthetic data 0.713 0.837 0.756 0.610 

4.2.2. Size Quantification and Localization 

The performance of defect size quantification was evaluated through controlled la-

boratory experiments. This evaluation aimed to validate the accuracy and reliability of 

converting pixel-based segmentation results into precise, real-world dimensional meas-

urements. A set of wall specimens with known, pre-measured crack and spalling defects 

was imaged under controlled lighting conditions. These images were processed through 

the complete inspection pipeline: first, the trained segmentation model isolated each de-

fect, and then the quantification algorithms (e.g., skeletonization for cracks, PCA for spall-

ing) calculated their key parameters. 

To establish a clear and consistent benchmark, the evaluation focused on the center 

position and the maximum horizontal and vertical spans of each defect. These values are 

directly derivable from bounding box parameters and can be rigorously verified in site. 

The algorithm results were compared against ground truth measurements in terms of 
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mean absolute error (MAE) and mean absolute percentage error (MPAE) (Equations (9) 

and (10)), which reflects the average difference between predicted and actual evaluation 

targets (length, width, or center) in metric units. 

𝑀𝐴𝐸 =
1

𝑛
∙ ∑|𝐿𝑝𝑟𝑒𝑑 − 𝐿𝑡𝑟𝑢𝑡ℎ|

𝑛

𝑖=1

 (9) 

𝑀𝑃𝐴𝐸 =
1

𝑛
∙ ∑

|𝐿𝑝𝑟𝑒𝑑 − 𝐿𝑡𝑟𝑢𝑡ℎ|

𝐿𝑡𝑟𝑢𝑡ℎ

𝑛

𝑖=1

 (10) 

During laboratory testing, a total of 119 defect instances were successfully detected 

and segmented. These results are summarized in Table 10. The proposed quantification 

method achieved MAEs of 1.140 cm, 0.417 cm, and 0.826 cm in length, width, and center, 

respectively. The corresponding MPAEs were 5.56%, 13.86%, and 4.92%, indicating that 

dimensional measurement errors generally fell around 10%. The standard deviation val-

ues reflect moderate variability in measurement consistency, which is influenced by fac-

tors such as defect irregularity and image resolution. 

The error distribution (illustrated in Figure 13) shows that the majority of dimen-

sional estimates are concentrated near zero error, with sparse instances exhibiting large 

deviations. This pattern suggests that while most defects are measured with high preci-

sion, certain challenging cases (e.g., highly irregular crack branching, faint spalling 

boundaries) contribute to broader error dispersion. These results demonstrate the mod-

ule’s effectiveness in translating pixel-based visual data into metrically accurate, structur-

ally meaningful measurements suitable for engineering assessment. 

 

Figure 13. Error distribution histograms. 

Table 10. Accuracy of defect size quantification. 

Metric MAE (cm) STD (cm) MPAE (%) STD (%) 

Length 1.140  3.135  5.56 13.36 

Width 0.417  1.038  13.86 31.93 

Box Center 0.826  1.901  4.92 9.92 

4.2.3. Project Management Platform 

The project management platform was validated in a building inspection project. The 

platform was initialized with all relevant project metadata based on user configuration 

inputs, including time, location, deployed equipment, and participating personnel. As the 

wall-climbing robot started an inspection task, multi-sensor data were transmitted in real 

time to the ground station via a wireless local area network (WLAN). The image data 

stream was processed through the defect segmentation and quantification pipeline. The 

results were then fused with the robot’s positioning data using synchronized timestamps, 
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enabling accurate registration of each defect within a global coordinate system. The pro-

cessed data is then mapped onto a high-fidelity digital twin model, creating a comprehen-

sive and interactive representation of the building’s facade condition. 

The real-time performance of the proposed platform on the ground station laptop is 

summarized in Table 11. The complete inspection workflow, from startup to feedback, 

demonstrates smooth and efficient on-site operations. After an initial model loading (max. 

4.5 s), the system executes its core operational loop, involving motion commanding (0.1 

s), image collection and transmission (2.0 s), position synchronization (0.5 s), and image 

analysis (0.2 s). Subsequently, data preview adds 1.0–2.0 s, depending on the user input. 

Under typical conditions, the system takes an average response time of approximately 

2.8–4.8 s for a full cycle. The precise temporal alignment between image frames and local-

ization data guarantees reliable traceability back to the moment of collection. These fea-

tures confirm the platform’s capability to support real-time robotic inspection and deci-

sion-making in field environments. 

Table 11. Time performance of the platform (on the ground station laptop). 

Phase Process Avg. Response Time (s) 

Preparation Model loading (3 MB–450 MB) 2.5–4.5 

Operation 

Motion commanding 0.1 

Image collection & transmission 2.0 

Position synchronization 0.5 

Image analysis 0.2 

Feedback Data preview (5 MB–400 MB) 1.0–2.0 

The digital twin interface is presented in Figure 14. The left-hand side provides op-

erational context through three dashboards: (1) the Project Overview which details iden-

tifiers such as project name, site location, and description; (2) the Environment Condition 

which shows real-time parameters (e.g., temperature, humidity) recorded during inspec-

tion; (3) the Equipment Status which shows live counts and operational states of all de-

ployed sensors, linked to the Equipment module of the platform. 

 

Figure 14. Digital twin of a target building for 3D visualization. 

The right-hand side presents the inspection outcomes and analytical insights. It in-

cludes: (1) the Defect Summary with interactive charts for multi-dimensional visualization 

of defect types, quantities, and spatial distributions; (2) the Safety Warning that highlights 

locations on the 3D model where defect metrics (e.g., crack width, spalling area) exceed 

predefined safety thresholds, accompanied by maintenance recommendations for proac-

tive risk management. Further, an inspection summary can be automatically generated 
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based on large language models (DeepSeek-R1 [51]) and a knowledge base of industry 

standards in building inspection. 

The proposed digital twin platform advances conventional inspection data manage-

ment in three aspects. (1) First, it significantly improves inspection efficiency: while tradi-

tional building assessments could take several days with daily updated visualizations [52], 

the current climbing robot covers facades of a building within a few hours and supports 

real-time data analysis with near-instant online visualization for remote users, effectively 

shortening the project timeline. (2) Second, it enhances defect traceability quantitatively, 

moving from vague positional descriptions or grid-based references (e.g., cracks at B2 re-

gion) to precise coordinate-based localization, enabling consistent tracking and compari-

son across multiple inspections for true digital twin facility management. (3) Third, the 

platform transforms maintenance decision-making by replacing qualitative judgments 

with quantifiable, standards-based metrics, allowing for objective, threshold-driven pri-

oritization of repair and renovation actions. 

5. Conclusions 

This paper presented an end-to-end framework for automated facade inspection, in-

cluding a wall-climbing robot, deep-learning defect analysis, and a digital twin platform. 

The wall-climbing robot, utilizing negative pressure adhesion, demonstrated reliable nav-

igation on vertical surfaces while carrying a suite of sensors, including an RGB camera 

and penetrating sensors. A customized lightweight model was trained for real-time, in-

stance segmentation of cracking and spalling defects at a precision of 0.775 mAP, followed 

by metric quantification with an average length error at 1.140 cm and center position error 

at 0.826 cm. The RTK-based positioning module enabled precise robot localization, facili-

tating accurate mapping within a building coordinate system. Furthermore, a cloud-based 

digital twin platform was developed to visualize inspection results, manage facility data, 

and support proactive maintenance through quantitative defect assessment and spatial 

localization. The proposed framework has been validated through multiple building in-

spection projects. It significantly improves upon traditional workflows by enhancing op-

erational safety, inspection efficiency, data traceability, and decision-making support. 

Though promising results have been demonstrated, this study still has some limita-

tions. First, the robot’s adhesion mechanism may not be applicable to highly rough sur-

faces, limiting its applicability. Second, the current study focused on surface-level defects, 

without a detailed investigation of subsurface conditions such as delamination or internal 

voids. 

Therefore, future works will focus on two directions: (1) enhancing the robot’s hard-

ware for improved adaptability to complex wall geometries and surface textures; (2) ana-

lyzing data from UWB radar and infrared sensors to enable non-destructive subsurface 

characterization. These multi-modal data streams will also be used for cross-validation to 

improve the robustness and accuracy of defect assessment across both visible and hidden 

structural flaws. 
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